Незалежність цифр Q2-зображення випадкової величини з заданим розподілом
Abstract
Let ξ be a random variable with a given (uniform, exponential.) probability distribution on a segment [0;1]. We study
conditions for Q2-digits (ξn) of random variable
ξ=ΔQ2ξ1ξ2...ξn... to be independent. For ξ
with exponential distribution, we prove that digits are independent if
and only if parameters q0 and q1 of this system of
representation are equal to 12. Otherwise digits are dependent
and this dependence is more complicated than Markov dependence. If the function of distribution of random variable with independent Q2-digits has a positive derivative at all Q2-binary points, then its distribution is uniform or exponential, moreover in the latter case the Q2-representative is binary.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 М.В. Працьовитий, С.П. Ратушняк

This work is licensed under a Creative Commons Attribution 4.0 International License.