Ланцюгові $A_3$-дроби: основи метричної теорії

Authors

  • М.В. Працьовитий НПУ імені М. П. Драгоманова
  • А.С. Чуйков Інститут математики НАН України, Київ
  • Д.В. Кюрчев

Abstract

We study a geometry of representation of numbers in terms of continued $A_3$-fractions, that is continued fractions, elements of which are acquire from a set $A_3\equiv\{s_0,s_1,s_2\}$, де $0<s_0<s_1<s_2, s_i\in\mathbb{R}$. We prove that if $s_0s_2=\frac{4}{3}$ and $s_1=(s_0+s_2)/2$ then each point of a certain interval has no more than two $A_3$-representation, and the set of points having two representations is countable, consequently, the encoding numbers system by means of a three-character alphabet, which is based on a decomposition of numbers in such continued fractions, has zero redundancy. The emphasis in the work is given to the topological-metric aspect of this representation (geometric sense of a figures, properties of the cylindrical and tail sets and so on).

Published

2017-12-26

How to Cite

Працьовитий, М., Чуйков, А., & Кюрчев, Д. (2017). Ланцюгові $A_3$-дроби: основи метричної теорії. Transactions of Institute of Mathematics, the NAS of Ukraine, 14(4), 97–110. Retrieved from https://trim.imath.kiev.ua/index.php/trim/article/view/408