Проектор ΔO-зображення чисел в ΔE-зображення
Abstract
In the paper we study function f that takes each argument x having alternating Ostrogradsky--Sierpi\'nski--Pierce series representation to a sum of Engel series with the same elements, i.e.,
f(∞∑n=1(−1)n−1q1q2…qn)=∞∑n=11(q1+1)⋅…⋅(qn+1),qn+1>qn∈N.
We prove that set of values for function f is nowhere dense set of positive Lebesgue measure. We analyze function f in terms of monotonicity, continuity and differentiability on the set of irrational numbers. We prove that function f is nowhere monotonic, continuous at any irrational point and non-differentiable in almost all points (in the sense of Lebesgue measure).
Downloads
Published
2017-12-26
How to Cite
Мороз, М. (2017). Проектор ΔO-зображення чисел в ΔE-зображення. Transactions of Institute of Mathematics, the NAS of Ukraine, 14(4), 49–64. Retrieved from https://trim.imath.kiev.ua/index.php/trim/article/view/404
Issue
Section
Research papers
License
Copyright (c) 2017 М.П. Мороз

This work is licensed under a Creative Commons Attribution 4.0 International License.