Про один клас ніде не монотонних функцій з фрактальними властивостями, який містить підклас сингулярних функцій
Abstract
We study one class of continuous functions $f$ defined on segment $[0,1]$ by equality
$$
f(x)=\delta_{\alpha_1(x)1}+\sum^{\infty}_{k=2}\left[\delta_{\alpha_k(x)k}\prod^{k-1}_{j=1}g_{\alpha_j (x)j}\right]\equiv\Delta^{G^*_3}_{\alpha_1\alpha_2\ldots\alpha_k\ldots},
$$
where $||q^*_{ik}||$ is given infinite stochastic positive matrix ($i=0,1,2$; $k \in N$); $\beta_{0k}=0$, $\beta_{1k}=q_{0k}$, $\beta_{2k}=q_{0k}+q_{1k}$;
$(\varepsilon_k)$ is given sequence of numbers such that $0\leqslant \varepsilon_k \leqslant 1 $; $g_{0k}=\dfrac{1+\varepsilon_k}{3}=g_{2k}$, $g_ {1k}=\dfrac{1-2\varepsilon_k}{3}$, $\delta_{0k}=0$, $\delta_{1k}=g_{0k}$, $\delta_{2k}=g_{0k}+g_{1k}$, $k\in N$.
We found criteria of strict monotonicity, non monotonicity and nowhere monotonicity, non-differentiability and singularity of the functions. We pay attention to properties of level sets of the functions.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 М. В. Працьовитий, С.О. Климчук
This work is licensed under a Creative Commons Attribution 4.0 International License.