On differentiable and monogenic functions in a harmonic algebra
Abstract
For locally bounded and differentiable in the sense of G\^ateaux functions Φ given in a three-dimensional commutativeharmonic algebra with two-dimensional radical, we prove the following statement: if the function Φ domain is convex "in the radical direction" and the difference ζ1−ζ2 belongs to the radical, the difference Φ(ζ1)−Φ(ζ2) belongs also to the radical. As a result, we prove that locally bounded and differentiable in the sense of G\^ateaux functions are also differentiable in the sense of Lorch.
Downloads
Published
2017-04-25
How to Cite
Plaksa, S. A. (2017). On differentiable and monogenic functions in a harmonic algebra. Transactions of Institute of Mathematics, the NAS of Ukraine, 14(1), 210–221. Retrieved from https://trim.imath.kiev.ua/index.php/trim/article/view/114
Issue
Section
Research papers