Канторівська двійково-фібоначчієва система числення у задачах теорії функцій
Abstract
In the article we study a class of continuous functions with locally complicated structure defined in terms of the representation of numbers in the Cantor number system:
\[[0;1]\ni x=\frac{\alpha_1}{s_1}+\frac{\alpha_2}{s_1s_2}+\cdots+\frac{\alpha_n}{s_1s_2 \ldots s_n}+\cdots \equiv\Delta_{\alpha_1\alpha_2 \ldots \alpha_n \ldots},\]
where $s_n=2^{\varphi_n}$, $(\varphi_n)$
is a classical Fibonacci sequence: $\varphi_1=1=\varphi_2$, \mbox{$\varphi_{n+2}=\varphi_n+\varphi_{n+1}$,} $\alpha_n\in \{0, 1, \ldots, s_n-1\}$.
Singular, nowhere monotonic and nondifferentiable functions, functions with bounded and unbounded variation are among the studied functions.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 О. І. Бондаренко, Н. М. Василенко, М. В. Працьовитий
This work is licensed under a Creative Commons Attribution 4.0 International License.