On root functions of fractional Schrödinger operator with singular potential

Authors

  • V. M. Molyboga Institute of Mathematics, NAS of Ukraine

Abstract

We prove a completeness in the Hilbert space $L^{2}(\mathbb{T})$ of the system of eigenfunctions and associated functions of non-selfadjoint fractional Schr\"{o}dinger operator $\mathbb{D}^{2s}u+Vu$, $s\in (1/2,1)$, on a circle with singular potential $V$ from the negative Sobolev space $H^{-s}(\mathbb{T})$.

Published

2016-05-16

How to Cite

Molyboga, V. M. (2016). On root functions of fractional Schrödinger operator with singular potential. Transactions of Institute of Mathematics, the NAS of Ukraine, 13(1), 244–255. Retrieved from https://trim.imath.kiev.ua/index.php/trim/article/view/216