D. Ya. Trebenko ${ }^{1}$, O. O. Trebenko ${ }^{2}$

1 National Pedagogical Dragomanov University; trebenko@npu.edu.ua

2 National Pedagogical Dragomanov University; trebenko@npu.edu.ua

Matrices with all minors of some fixed order being equal: the rank, dimension and characteristic property

У статті досліджується клас \mathfrak{M} матриць (над довільним полем), в яких всі мінори деякого фіксованого порядку k - рівні і відмінні від 0. Встановлено, що ранг таких матриць дорівнює k. Знайдено можливі значення для розмірності матриці з класу \mathfrak{M}. Дано також необхідну і достатню умову для того, щоб матриця належала до класу \mathfrak{M}.

Investigated in this paper is a class \mathfrak{M} of matrices (over an arbitrary field) in which all minors of some fixed order k are equal and nonzero. It is established that the rank of such matrices equals to k. The possible values for the dimension of a matrix in \mathfrak{M} are found. A necessary and sufficient condition for a matrix to belong to the class \mathfrak{M} is also given.
(C) D. Ya. Trebenko, O. O. Trebenko, 2019

1. Introduction

Matrices with all principal minors of some fixed order being equal were studied by R.C.Thompson in [1] and [2]. In [1] a classification was obtained for symmetric matrices having all principal minors of order t equal, for three consecutive values of t less than the rank of A. A similar result, a classification for real symmetric matrices such that all principal minors of order t are equal and all nonprincipal minors are of fixed sign for two consecutive values of t less than the rank of A, is presented in [2]. The paper [2] also characterizes square matrices A over an arbitrary field in which the condition on the principal minors of A is weakened: it is required that all principal minors of order t are equal for one fixed value of t less then the rank of A; while the condition on nonprincipal minors of order t is strengthened: it is required that they are also equal.

Investigated in this paper is a class \mathfrak{M} of matrices (not only square and over an arbitrary field) in which all minors of some fixed order k are equal and nonzero. It is established that the rank of such matrices equals to k. The possible values for the dimension of a matrix in \mathfrak{M} are found. A necessary and sufficient condition for a matrix to belong to the class \mathfrak{M} is also given. As an example illustrating main results, a classification is found for matrices that have all minors of order 2 equal and nonzero.

2. Notation

Let A be a $m \times n$-matrix over an arbitrary field. For A, we use $A^{\top}, A^{*}, \operatorname{rank} A, \operatorname{det} A$ to stand for the transpose matrix, the adjoint matrix, the rank and the determinant of A, respectively.

By A^{j} we mean j-th column of $A(j \in \overline{1, n})$ and A_{i} is used to denote i-th row $(i \in \overline{1, m})$. In addition, we use the notation $\left(A^{j_{1}} A^{j_{2}} \ldots A^{j_{s}}\right)$ for the submatrix formed by selecting from A a subset of columns $A^{j_{1}}, A^{j_{2}}, \ldots, A^{j_{s}}$ in the same relative position.

Remark that a class \mathfrak{M} of matrices over a field in which all minors
of some fixed order k are equal to $w \neq 0$ is closed under taking submatrices and transposes.

3. Main results

Теорема 1. Let P be a field and A be a $m \times n$-matrix over P in which all minors of order k are equal and nonzero. Then:
(i) $\operatorname{rank} A=k$;
(ii) $k \leq m, n \leq k+1$.

Доведення. (i) Let all minors of order k of the matrix A be equal to w. Since, by theorem's condition, $w \neq 0$, obviously, $\operatorname{rank} A \geq k$.

If $k=1$ then $A=\left(a_{i j}\right)$ where $a_{i j}=w$. In the case when $w \neq 0$ the rank of the matrix A equals to 1 and the assertion of the theorem is valid.

Let $k>1$. Assume that the rank of the matrix A is greater than k. Then there exist $(k+1)$ linearly independent rows and $(k+$ 1) linearly independent columns in A such that the corresponding square submatrix B of order $k+1$ of the matrix A is nonsingular: $B=\left(b_{i j}\right), 1 \leq i \leq k+1,1 \leq j \leq k+1$. In this case, for the matrix B, there exists an inverse matrix B^{-1} :

$$
B^{-1}=(\operatorname{det} B)^{-1} B^{*}
$$

where B^{*} is an adjoint matrix to the matrix B. Since all minors of order k of the matrix B are equal to w,
$B^{-1}=(\operatorname{det} B)^{-1}\left(\begin{array}{ccccc}w & -w & w & \ldots & (-1)^{k+1} w \\ -w & w & -w & \ldots & (-1)^{k+2} w \\ w & -w & w & \cdots & (-1)^{k+3} w \\ \ldots & \ldots & \cdots & \cdots & \cdots \\ (-1)^{k+1} w & (-1)^{k+2} w & (-1)^{k+3} w & \ldots & (-1)^{2 k} w\end{array}\right)$.
In the case $w \neq 0$, the rank of the matrix B^{-1} equals to 1 . Since $k>1$, it implies that B^{-1} is singular, which contradicts to the choice of B. Hence, the assumption is not valid and $\operatorname{rank} A=k$.
(ii) Let now show that the number of columns (as well as the number of rows) of the matrix A is equal to k or $k+1$. Obviously, $k \leq m, n$.

Let $m \leq n$. Assume $n \geq k+2$ and consider $k \times(k+2)$-submatrix C of the matrix A. All minors of order k of the matrix C are equal to $w \neq 0$, therefore, in view of (i), $\operatorname{rank} C=k$.

Denote by C^{j} the j-th column of C.
Since $\operatorname{rank} C=k$ and the determinant of the matrix $\left(C^{1} C^{2} \ldots C^{k}\right)$, obtained by deleting from C both column $(k+1)$ and column $(k+2)$, is equal to w, we get that the system of vectors $C^{1}, C^{2}, \ldots, C^{k}$ is linearly independent and is the basis of the system of vectors $C^{1}, C^{2}, \ldots, C^{k}, C^{k+1}, C^{k+2}$. Therefore, vector-columns C^{k+1} and C^{k+2} can be expressed as the linear combinations of $C^{1}, C^{2}, \ldots, C^{k}$:

$$
C^{k+1}=\sum_{i=1}^{k} s_{i} C^{i}, \quad C^{k+2}=\sum_{i=1}^{k} l_{i} C^{i}, \quad s_{i}, l_{i} \in P
$$

Consider the determinant of the matrix, obtained by deleting from C both column k and column $(k+2)$:

$$
\begin{aligned}
& \operatorname{det}\left(C^{1} C^{2} \ldots C^{k-1} C^{k+1}\right)=\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-1}\left(\sum_{i=1}^{k} s_{i} C^{i}\right)\right)= \\
& \quad=\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-1}\left(s_{k} C^{k}\right)\right)=s_{k} \operatorname{det}\left(C^{1} C^{2} \ldots C^{k-1} C^{k}\right)
\end{aligned}
$$

Since both $\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-1} C^{k+1}\right)$ and $\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-1} C^{k}\right)$ are minors of order k of the matrix C, they are equal to $w \neq 0$, hence, $s_{k}=1$.

Consider now the determinant of the matrix, obtained by deleting from C both column $(k-1)$ and column $(k+2)$:

$$
\begin{aligned}
& \operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k} C^{k+1}\right)=\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k}\left(\sum_{i=1}^{k} s_{i} C^{i}\right)\right)= \\
& =\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k}\left(s_{k-1} C^{k-1}\right)\right)=s_{k-1} \operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k} C^{k-1}\right)=
\end{aligned}
$$

$$
=-s_{k-1} \operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k-1} C^{k}\right)
$$

Since both $\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k} C^{k+1}\right)$ and $\operatorname{det}\left(C^{1} C^{2} \ldots C^{k-2} C^{k-1} C^{k}\right)$ are minors of order k of the matrix C, they are equal to $w \neq 0$, hence, $s_{k-1}=-1$.

In a similar way, we get $s_{k-2}=1, s_{k-3}=-1, \ldots, s_{1}=(-1)^{k+1}$. Then

$$
\begin{aligned}
C^{k+1}=(-1)^{k+1} C^{1}+(-1)^{k} C^{2}+(-1)^{k-1} C^{3} & +\ldots-C^{k-1}+C^{k}= \\
& =\sum_{i=1}^{k}(-1)^{k+2-i} C^{i}
\end{aligned}
$$

Repeating the same considerations for the column C^{k+2} of the matrix C, we get:

$$
\begin{aligned}
C^{k+2}=(-1)^{k+1} C^{1}+(-1)^{k} C^{2}+(-1)^{k-1} C^{3} & +\ldots-C^{k-1}+C^{k}= \\
& =\sum_{i=1}^{k}(-1)^{k+2-i} C^{i}
\end{aligned}
$$

hence, $C^{k+1}=C^{k+2}$. But then the determinant $\operatorname{det}\left(C^{3} \ldots C^{k} C^{k+1} C^{k+2}\right)$ of order k of the matrix, obtained by deleting from C both column 1 and column 2, is necessarily equal to 0 , which contradicts the condition of the theorem. Therefore, assumption is not valid and $n \leq k+1$.

It remains to consider the case $n \leq m$. Since all minors of order k of the transpose matrix A^{\top} are also equal to $w \neq 0$, applying the proven result to A^{\top} gives us that the number of columns of A^{\top} does not exceed $k+1$, hence, $m \leq k+1$.

The theorem is proven.
Наслідок 2. Let A be a $k \times(k+1)$-matrix over the field P. All minors of order k of the matrix A are equal and nonzero iff the following conditions 1)-2) hold:

1) $\operatorname{rank} A=k$;
2) $(k+1)$-th column A^{k+1} of the matrix A is expressed as the linear combination:

$$
\begin{aligned}
& A^{k+1}=\sum_{j=1}^{k}(-1)^{k+2-j} A^{j}= \\
& =(-1)^{k+1} A^{1}+(-1)^{k} A^{2}+(-1)^{k-1} A^{3}+\ldots-A^{k-1}+A^{k}
\end{aligned}
$$

where A^{j} is a j-th column of the matrix $A, 1 \leq j \leq k$.
Доведення. Necessity immediately follows from the proof of Theorem.

Sufficiency. Let the conditions 1)-2) hold for the matrix A and $\left.\operatorname{det} \overline{\left(A^{1} A^{2} \ldots A^{k}\right.}\right)=w \neq 0$. Let M be an arbitrary minor of order k of the matrix A. Then M is a determinant of a matrix, obtained by deleting from A some column $A^{j}, j \in \overline{1, k+1}$.

If $j=k+1$ then $M=\operatorname{det}\left(A^{1} A^{2} \ldots A^{k}\right)=w$. Let $1 \leq j \leq k$. Then

$$
\begin{aligned}
& M=\operatorname{det}\left(A^{1} \ldots A^{j-1} A^{j+1} \ldots A^{k} A^{k+1}\right)= \\
& =\operatorname{det}\left(A^{1} \ldots A^{j-1} A^{j+1} \ldots A^{k}\left(\sum_{j=1}^{k}(-1)^{k+2-j} A^{j}\right)\right)= \\
& \quad=\operatorname{det}\left(A^{1} \ldots A^{j-1} A^{j+1} \ldots A^{k}\left((-1)^{k+2-j} A^{j}\right)\right)= \\
& \quad=(-1)^{k+2-j} \operatorname{det}\left(A^{1} \ldots A^{j-1} A^{j+1} \ldots A^{k} A^{j}\right)= \\
& =(-1)^{k+2-j}(-1)^{k-j} \operatorname{det}\left(A^{1} \ldots A^{j-1} A^{j} A^{j+1} \ldots A^{k}\right)=(-1)^{2(k+1-j)} w=w .
\end{aligned}
$$

The corollary is proven.
The next proposition follows immediately from Corollary 1, in view of the fact that the class \mathfrak{M} of matrices with all minors of some fixed order k being equal and nonzero is closed by taking inverse matrices and submatrices.

Наслідок 3. Let A be a $(k+1) \times(k+1)$-matrix over the field P. All minors of order k of the matrix A are equal and nonzero iff the following conditions 1)-2) hold:

1) $\operatorname{rank} A=k$;
2) $(k+1)$-th column A^{k+1} of the matrix A is expressed as the linear combination:

$$
\begin{aligned}
& A^{k+1}=\sum_{j=1}^{k}(-1)^{k+2-j} A^{j}= \\
& =(-1)^{k+1} A^{1}+(-1)^{k} A^{2}+(-1)^{k-1} A^{3}+\ldots-A^{k-1}+A^{k}
\end{aligned}
$$

where A^{j} is a j-th column of the matrix $A, 1 \leq j \leq k$.
3) $(k+1)$-th row A_{k+1} of the matrix A is expressed as the linear combination:

$$
\begin{aligned}
& A_{k+1}=\sum_{i=1}^{k}(-1)^{k+2-i} A^{i}= \\
& =(-1)^{k+1} A_{1}+(-1)^{k} A_{2}+(-1)^{k-1} A_{3}+\ldots-A_{k-1}+A_{k}
\end{aligned}
$$

where A_{i} is a i-th row of the matrix $A, 1 \leq i \leq k$.
Зауваження 1. For arbitrary given field $P, w \in P \backslash\{0\}$ and positive integer k, there exist matrices over P of the dimensions $k \times k$, $k \times(k+1),(k+1) \times k,(k+1) \times(k+1)$ having all minors of order k equal to w. Indeed, one can always indicate a square matrix B of order k, which determinant is equal to w, e.g.,

$$
A=\left(\begin{array}{ccccc}
w & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Consider a $k \times(k+1)$-matrix A such that B is a submatrix of A obtained by deleting $(k+1)$-th row: $B=\left(A^{1} A^{2} \ldots A^{k}\right)$, and

$$
A^{k+1}=\sum_{j=1}^{k}(-1)^{k+2-j} A^{j}=
$$

$$
=(-1)^{k+1} A^{1}+(-1)^{k} A^{2}+(-1)^{k-1} A^{3}+\ldots-A^{k-1}+A^{k}
$$

In view of Corollary 1, all minors of order k of the matrix A are equal to w. In a similar way, one can construct matrices the dimensions $(k+1) \times k,(k+1) \times(k+1)$.

As an illustration to the Theorem, consider the following example classifying matrices in which all minors of order 2 are equal to some fixed $w \neq 0$.

Example 1. Let A be a matrix over a field P. All minors of order 2 of A are equal to $w \neq 0$ iff A is a matrix of one of the following types:

1) $A=\left(\begin{array}{cc}a_{1} & a_{2} \\ -w a_{2}^{-1} & 0\end{array}\right)$ where $a_{1}, a_{2} \in P, a_{2} \neq 0 ;$
2) $A=\left(\begin{array}{cc}\left(a_{2} a_{3}+w\right) a_{4}^{-1} & a_{2} \\ a_{3} & a_{4}\end{array}\right)$ where $a_{2}, a_{3}, a_{4} \in P, a_{4} \neq 0$;
3) $A=\left(\begin{array}{ccc}a_{1} & a_{1}+a_{2} & a_{2} \\ -w a_{2}^{-1} & -w a_{2}^{-1} & 0\end{array}\right)$ where $a_{1}, a_{2} \in P, a_{2} \neq 0$;
4) $A=\left(\begin{array}{ccc}\left(a_{2} a_{3}+w\right) a_{4}^{-1} & \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2} & a_{2} \\ a_{3} & a_{3}+a_{4} & a_{4}\end{array}\right)$
where $a_{2}, a_{3}, a_{4} \in P, a_{4} \neq 0$;
5) $A=\left(\begin{array}{cc}a_{1} & -w a_{2}^{-1} \\ a_{1}+a_{2} & -w a_{2}^{-1} \\ a_{2} & 0\end{array}\right)$ where $a_{1}, a_{2} \in P, a_{2} \neq 0$;
6) $A=\left(\begin{array}{cc}\left(a_{2} a_{3}+w\right) a_{4}^{-1} & a_{3} \\ \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2} & a_{3}+a_{4} \\ a_{2} & a_{4}\end{array}\right)$ where $a_{2}, a_{3}, a_{4} \in P$, $a_{4} \neq 0 ;$
7) $A=\left(\begin{array}{ccc}a_{1} & a_{1}+a_{2} & a_{2} \\ a_{1}-w a_{2}^{-1} & a_{1}+a_{2}-w a_{2}^{-1} & a_{2} \\ -w a_{2}^{-1} & -w a_{2}^{-1} & 0\end{array}\right)$ where $a_{1}, a_{2} \in P$, $a_{2} \neq 0 ;$
8) $A=\left(\begin{array}{ccc}\left(a_{2} a_{3}+w\right) a_{4}^{-1} & \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2} & a_{2} \\ \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{3} & \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2}+a_{3}+a_{4} & a_{2}+a_{4} \\ a_{3} & a_{3}+a_{4} & a_{4}\end{array}\right)$ where $a_{2}, a_{3}, a_{4} \in P, a_{4} \neq 0$.

Indeed, by Theorem, $\operatorname{rank} A=2$, the number of rows and columns is 2 or 3 .

Case 1. Let A be a square matrix of order 2: $A=\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right)$, $a_{1} a_{4}-a_{2} a_{3}=w \neq 0, a_{1}, a_{2}, a_{3}, a_{4} \in P$. If $a_{4}=0$ then $a_{2} a_{3}=$ $-w$. Since $w \neq 0$, we have $a_{2} \neq 0$ and $a_{3}=-w a_{2}^{-1}$, hence, $A=$ $\left(\begin{array}{cc}a_{1} & a_{2} \\ -w a_{2}^{-1} & 0\end{array}\right)$ and A is of type 1$)$. If $a_{4} \neq 0$ then $a_{1}=\left(a_{2} a_{3}+\right.$ w) a_{4}^{-1}, hence,

$$
A=\left(\begin{array}{cc}
\left(a_{2} a_{3}+w\right) a_{4}^{-1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)
$$

and A is of type 2).
Case 2. Let A be a 2×3-matrix. Then, by Corollary, its 2 -nd column is a sum of the 1 -st and 3 -rd columns: $A=$ $\left(\begin{array}{lll}a_{1} & a_{1}+a_{2} & a_{2} \\ a_{3} & a_{3}+a_{4} & a_{4}\end{array}\right)$ where $a_{1} a_{4}-a_{2} a_{3}=w, a_{1}, a_{2}, a_{3}, a_{4} \in P$. If $a_{4}=0$ then $a_{2} \neq 0$ and $a_{3}=-w a_{2}^{-1}$, hence,

$$
A=\left(\begin{array}{ccc}
a_{1} & a_{1}+a_{2} & a_{2} \\
-w a_{2}^{-1} & -w a_{2}^{-1} & 0
\end{array}\right)
$$

and A is of type 3$)$. If $a_{4} \neq 0$ then $a_{1}=\left(a_{2} a_{3}+w\right) a_{4}^{-1}$, hence,

$$
A=\left(\begin{array}{ccc}
\left(a_{2} a_{3}+w\right) a_{4}^{-1} & \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2} & a_{2} \\
a_{3} & a_{3}+a_{4} & a_{4}
\end{array}\right)
$$

and A is of type 4).
Case 3. Let A be a 3×2-matrix. Then the transpose matrix A^{\top} is a matrix of type 3) or type 4), hence, A is a matrix of type 5) or type 6).

Case 4. Let A be a 3×3-matrix. Then, by Corollary 2 , its 2 -nd column is a sum of the 1 -st and 3 -rd columns, while its 2 -nd row is a sum of the 1 -st and 3 -rd rows: $A=$ $\left(\begin{array}{ccc}a_{1} & a_{1}+a_{2} & a_{2} \\ a_{1}+a_{3} & a_{1}+a_{2}+a_{3}+a_{4} & a_{2}+a_{4} \\ a_{3} & a_{3}+a_{4} & a_{4}\end{array}\right)$ where $a_{1}, a_{2}, a_{3}, a_{4} \in P$, $a_{1} a_{4}-a_{2} a_{3}=w \neq 0$. If $a_{4}=0$ then $a_{2} \neq 0, a_{3}=-w a_{2}^{-1}$, hence, $A=\left(\begin{array}{ccc}a_{1} & a_{1}+a_{2} & a_{2} \\ a_{1}-w a_{2}^{-1} & a_{1}+a_{2}-w a_{2}^{-1} & a_{2} \\ -w a_{2}^{-1} & -w a_{2}^{-1} & 0\end{array}\right)$ and A is a matrix of type 7). If $a_{4} \neq 0$ then $a_{1}=\left(a_{2} a_{3}+w\right) a_{4}^{-1}$, hence, $A=$ $\left(\begin{array}{ccc}\left(a_{2} a_{3}+w\right) a_{4}^{-1} & \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2} & a_{2} \\ \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{3} & \left(a_{2} a_{3}+w\right) a_{4}^{-1}+a_{2}+a_{3}+a_{4} & a_{2}+a_{4} \\ a_{3} & a_{3}+a_{4} & a_{4}\end{array}\right)$ and A is of type 8).

Corollaries 1,2 and direct calculations show that the matrices of types 1)-8) have all minors of order 2 equal to w.

4. Conclusion

In this paper, we have established that the rank of a matrix having all minors of order k equal and nonzero is equal to k. The number of columns of such matrices is k or $k+1$ (as well as the number of rows). Using the necessary and sufficient condition for a matrix to have all minors of order k equal and nonzero, one can easily classify all matrices for fixed values of k. In this study, such classification is given for $k=2$.

Література

[1] Thompson, R. C. Principal submatrices V: Some results co ncerning principal submatri ces of arbitrary matrices // Journal of Research of the National Bureau of Standards. - 1968. - Vol. 72B (Math . Sci.), No. 2 - pp. 115-125.
[2] Thompson, R. C. Principal submatrices VII: Further results concerning matrices with equal principal minors // Journal of Research of the National Bureau of Standards. - 1968. - Vol. 72B (Math . Sci.), No. 4 - pp. 249-252.

