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B craTTi posrismaeTses 3aatua rpymnoBol kiacudikaril KBasigiHiitaux pis-
HsHb €JIITUYHOIO THUILy B JBOBUMipHOMY mpocropi. OTpuMaHo nepesiku
yCiX pIBHSIHD IIOTO KJIACY, sIKi JOITyCKaloTh HamiBIpocTi anrebpu JIi ome-
partopiB cumerpii Ta anredbpu JIi omeparopiB cumerpil 3 HeTpuUBiaIbHUM
po3kiasiom Jlesi.

In the paper the problem of group classification of quasi-linear elliptic type
equations in two-dimensional space is considered. We obtain the list of
all equations of this type admitting semisimple Lie algebras of symmetry
operators and Lie algebras of symmetry operators with non-trivial Levi
decomposition.

We consider quasilinear two-dimensional equations of elliptic type
Au = f(x,y, U, Uy, Uy). (1)

In (1) and below A = 0, +0yy = aa—:g + 8‘9—;2 is a two-dimensional Laplace

operator, u = u(x,y), F' is an arbitrary smooth function in some domain

of the space W = R? x V = (z,y) X (u,uyz,u,), that is nonlinear, at
1

least, with respect to one variable u, s, .

Statement 1. The Lie invariance group of equation (1) is generated by
the infinitesimal operator

v =a(z,y)0: + b(x,y)0y + c(z, y, u)0u, 2)
where functions a, b, ¢, F satisfy the following system of equations:
ay +by =0, agp—b,=0,
Coz + Cyy + 2UgCay + 2UyCyy + (u? + ui)cuu + (cy — 2a,)F = (3)
=aF, +bFy + cFy, + [cg + ug(cy — az) — uybg]Fy, +
+ ey +uy(cu — by) —ugay]Fy, .
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It is not difficult to see that the first two equations are Cauchy—
Riemann conditions, that means that functions a and b are harmonic
ones.

The group £ is formed by those transformations

D(z,y,v)
D(z,y,u)

T=a(z,y,u), §=70yu), v="(z,yu), #0,

preserving differential structure of equation (1), that transform it to an
equation of the form
Vzz + Vyy = é(‘i’ ga v, Uz, Uzj)-

Statement 2. The group £ of equation (1) is formed by the following
transformations:

j:a(l‘vy)a g:ﬁ(ﬁC,y), ’U_rY(x Yy,u )7 (4)

ap =€fy, au=—€B;, (e==l),
az +ay =03+ 06;#0, w#0.

Lemma 1. There exist such transformations from the group & that re-
duce operator (2) to one of the following operators:

V=0, V=04 (5)

We start the group classification from the description of equations
invariant with respect to Lie algebras with a non-trivial Levi decomposi-
tion.

First we will consider the following two equations of form (1):

Au= f(u)(uf +uy), f#0; (6)
Au= X", AyeR, Iy #£0. (7)
These equations are invariant with respect to groups of infinitesimal
transformation with infinite number of parameters that are generated

by operators of form (2).
Equation (6) can be reduced by the substitution

o= [ e @t o =ew ( | f(n)dn)
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to the two-dimensional Laplace equation. Equation (7) is connected to
the Laplace equation by the Backlund transformation.

Invariance of equation (1) with respect to Lie algebras of
symmetry operators with non-trivial Levi decomposition. It is
well known in the theory of abstract Lie algebras [1] that arbitrary
Lie algebra with a non-trivial Levi decomposition contains some simple
(semisimple) Lie algebra as a subalgebra. For this reason, first of all, we
will describe equations that are invariant with respect to simple (semi-
simple) Lie algebras of symmetry operators.

Theorem 1. Up to E-equivalence, there are two classes of quasilinear
equations of form (1) admitting Lie algebras of symmetry operators that
are different realizations of the algebra so(3):

L Au=ch ?yF(u,w), w=(u+ ufl) ch?y :
50" (3) = (0z,shycos x0, — chysinzd,,
—shysinz0; — chycosz0y);
II. Au=ch 2yF(échy,nchy), &= (uy —thy)sinu+ Uy COS U,
1 = (uy — thy) cosu — uy sinwu :
50%(3) = (0y,shycos 20, — chysinzd, + chycos x0,,
—shysinzd, — chycosxd, — chysinxzd,).
Theorem 2. Up to £-equivalence, there are two classes of quasilinear

equations of form (1) admitting Lie algebras of symmetry operators that
are different realizations of the algebra sl(2,R):

L Au=y ?Flu,w), w=y*@w?+ ul) :
sI*(2,R) = (220, + 2y0y, —(2? —y*)0, — 2xy0y, 0z);
I Au=y2F(v,w), v=(1-2yuy)cos2u+ 2yu, sin 2u,
w = 2yu, cos 2u — (1 — 2yu,) sin 2u :
sl?(2,R) = (220, + 2y0,, — (2% — y*)0y — 22y0y + yOu, Ox).

It is well known from the theory of abstract Lie algebra over the field
R that there exist four types of classical simple algebras:

1) type A,—1(n > 1) that contains four real forms of the algebra
sl(n, C): su(n), sl(n,R), su(p,q) (p+q=mn,p = q), su*(2n);
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2) type D, (n > 1) that contains three real forms of the algebra
so(2n,C): so(2n), so(p,q) (p+q =2n,p > q), so*(2n);

3) type B, (n > 1) that contains two real forms of the algebra so(2n+
1,0): so(2n+1), so(p,q) (p+q=2n+1,p>q);

4) type Cp, (n > 1) that contains three real forms of the algebra
sp(n, C): sp(n), sp(n,R), sp(p,q) (p+q=mn,p = q).

and the following special cases of semisimple real algebras: Gy, Fy, FEg,
E7, Es.

Theorem 3. Equations of form (1) invariant with respect to a symmetry
algebra with a non-trivial Levi decomposition are exhausted by ones pre-
sented in theorems 1 and 2.

Sketch of proof. 1. so(4) = (e;|li = 1,2,3) @ (&]i = 1,2,3). Then in
accordance to the results of theorem 2 the operators e; (i = 1,2,3)
represent a basis of realizations so!(3) or s0%(3). Direct calculations show
that in such case the operators &; (i = 1,2,3) belong to the class of
operators ¢(u)d,, and in accordance to the statement obtained in the
process of proof of theorem 2, there is no realizations of the algebra
s0(3) in this class of operators. Thus, there exist no nonlinear equation
of form (1) whose invariance algebra is isomorphic to the algebra so(4).
2. The type G2 contains one compact real form go and one non-
compact form g}. Since g2 N gh ~ su(2) ® su(2) ~ so(4) and algebra
so(4) does not have realizations in the given class of operators, in this
class of operators the algebras g, and g5 also do not have realizations.
3. For the algebras so(3,1) we will use Cartan’s decomposition:
s0(3,1) = (e1,e2,e3) ® (N1, N2, N3), ne (e1,€2,e3) = s0(3), [e;, Nj] =

€ijtNt, [Ny, Nj| = —eijier; 1,7,1 = 1,2,3; €;;1 is antisymmetric tensor of
third rank, 193 = 1.

It can be proved that the realization has the form:

e1 =0z, Ni =0y,

eg = €1(shycoszd, — chysinzd,) + shysinzd,,
e3 = —e1(shysinzd, + chycosxdy) + shy cos zd,,
Ny = €1 (chysinz0, + shycosx0y) — chy cos 0y,
N3 = ¢ (shycosxd, —shysinzdy) + chysinz.
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The respective invariant solution having the form
Au=Xe?7% X eR, N#0,

is the subcase of equation (7). O

Invariance with respect to decomposable algebras. In accor-
dance to the above here we study existence of equations of form (1)
invariant with respect to algebras of form S@® N, i.e. satisfying conditions

[S,S]cS, [N,N]JCN, [S,N]=0. (8)

Possible realisations so'(3), s0?(3), si'(2,R), si?(2,R) of semisimple al-
gebras S (Levi factor) have been found in the theorems 1 and 2.

There exist six classes of nonlinear equations of form (1), whose maxi-
mal invariance algebras can be decomposed into the direct sum of the
Levi factor and solvable Lie algebra:

1) Au=ch?yF(w), w=(u?+ “3) ch?y: 50*(3) ® (Du);
2) Au=ch ?yF(w), w= (uychy—shy)?+ ui ch?y -
50%(3) @ (0y);
3) Au=y?F(w), w=(u+ ui)gf o sIM2,R) @ (0y);
4) Au=y?Flw), w= 4y2u§ + (1 —2yu)? . sI%(2,R) @ (Du);

5) Au=Ach ty,/u2 + uZ, N#£0: 50 (3) @ (O, uy);
6) Au=Xy~ "\ JuZ+u2, A£0: sI*(2,R)® (Oy,udy).

Here ' = F(w) is an arbitrary smooth function, F,, # 0.

Invariance with respect to non-decomposable algebras. Here
we will investigate an existence of equations of form (1) invariant with
respect to algebras of form S €N, i.e. satisfying conditions

[S,8] S, [N,NJCN, [S,N]CN. 9)

In this investigation we will use results of the paper [2|, where classifi-
cation of Lie algebras of dimension not greater then eight, and whose
Levi factor coincides with the algebras so(3) and sl(2,R).

Result. There exist no nonlinear equations of form (1) with invariance
algebras of such structure.
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Invariance with respect to solvable algebras of symmetry
operators. For each two-dimensional and three-dimensional solvable
algebras As,; = (e1,e2), (i = 1,2) and Az, = (e1,ea,e3) (1 = 1,...,9)
below we adduce realizations and corresponding forms of the functions F'.

Az ([er, 2] = 0):

A%.l = <ax78y>, F:F(u,uz7uy);
A3, = (04,0,), F= F(y,uﬁ,uy);
A3 = (0u, 9(x,9)0u) (g # const)

GzUzg +gyuy(
= (Gaz + gyy) + G(z,y,w),
e oo

W = gyUg — GJoUy, gi + gz 7& 0.
As o ([61,62] = 62)5

A%.Q = (—xéh - yay»ar> : F= (Ui + uZ)F(uvwlaWQ)a
W1 = YUy, W2 = YUy;

A%.Q = <a$ - u@u, au> : F= eimp(valaa&)a
w1 = €Uy, wo = e Uy;

A5 o = (—udy,0y) 0 F = (uy +uy)F(x7yaw)7 w = uxugl.

Let us note that for arbitrary forms of functions F the respective reali-

sations are the maximal invariance algebras of equations.

A3.1 ([ejael] = Oa ]7l = 17273):

Aé.l = <a:v76yaau>7 F= G(uw,uy);
"

A2y = (0n. 00 f)D), ['(y) #0, F= J}—u Glyu);
Ag.l = <au7f<x7y)au’g($>y)au>

Further analysis of the determining equations for operators f(z,y)d, and
g(x,y)0, shows that either the respective invariant equation is linear or
g(z,y) = Mf(x,y) + p, where A, p are constants, and then the case A3 ;
is reduced to the two-dimensional case.

Az ([e1,e2] = €2, [e1,e3] = [e2,e3] = 0):

Aé-Q = (—20; — Y0y, 0., 0u), F = UZG(yumyuy%
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A§.2 = (—u0y, O, 0z), F = (us+ Uy)G (y7 uz) ;
Y
3 2 = </\8y uau7auvaw>a A#0,
F = (u, —|—uy)G(ey/)‘uz7ey/)‘uy);
Ag 9 = (Op — U0y, Ou, f(y)e “0u), f(y) #0,
2
F= _f —’}f uy + e Gy, e fluy + e” fuy).
Az ([e2,e3] = e1, [e1,e2] = [e1,e3] = 0):
Aé_3 = (O, 0, A0y + 20u), A # 0, F =GAuy —y,uy);

Agd = <au7 (f(y) - x)auvax>v F= _f//uz + G(yuuy + f/ux)
Az ([e1,e3] = e1, [e2,e3] = e1 + €2, [e1,e2] = 0):

A 4 = (O, 00, 00y + Y0y + (u+2)dy), F =e “G(uy,ye "*);
A3 4 = (Ou, (F(y) — 2)0u, 0 + ud),
flu . L
=T O )

Az ([e1,e3] = e1, [e2,e3] = ez, [e1, e2] = 0):

Als = (00,0000 490, F = (1 41,6 (22
Yy

A3 5 = (O, Ou, 200 + 40y +udy), F =y 'Glug,uy);
A s S ()0, 00 +udy),  f#0,

= (Ou
F= Jﬁf”+€”G(y L fe ug);

Ag.d = <au7 f<x7 y)aU'uau>7
The equation that is invariant with respect to A3 5 is linear.
Az ([e1,e3] = e1, [e2,e3] = —e2, [e1,€2] = 0):
A3 = (00, Ouy 20; +y0y —udy),  F =y °Gly us, v uy);

A%.G = (Ou, ezzf(y)auyax +udy), fly) #0,

2fu, + f' " x lo—T -
F:JT(JC';?U +4f) + "Gy, f'e"uy — 2fe”"uy);
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As.7 ([er,es] = e1, [e2,e3] = ge2 (0 < [q| < 1), [e1,e2] = 0):
Al o = (0p,0u, 00y + Y0y + qudy,), F =y 2G(y* g,y  u,);
A3 7 = (O, 00, g0y + qydy + udy),
F = y(172q)/qG(y(q71)/qum y(q71)/quy);
A3 7 = (9, 7D f(y)Ou, O + 1),

o L 0 02+
+ "Gy, fle uy + (¢ — 1) fe "uy).
Ass ([e1,es] = —ea, [ea,e3] = €1, [e1,e2] = 0):
Ao = (O, Oy, YOy — x0y), F = G (u,u + “12/)7
Al s = (Ouste(f(y) — )80, 8z — utg(f(y) — x)u),

e oy~ ) (] - o) +
+ (f'uz 4 uy) Gy, cos(f — 2)(f'ue +uy)).
A3,9 ([61,63] = qge; — ea, [62,63] = e1 + qea (q > 0), [61,62] = 0)

Al g = (02, 0y, (qz + y)0s + (qy — 2)0y),

F =

F = (u?+ uz)G (u In(u? +u ) + 2g arctan u) ;
y

A%.Q = <au7tg(f( ) - x)aua aa: + (q - tg(f( ) - I))u@u>,
Tty = g oy — ) te(f @) +

TR
(f e+ )Gy, cos(f — 2)(f'uip + ) ).
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