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B pobGoti npoanaJiizoBaHO YMOBHY CHMETPIIO TiltepOoJIiaHOro y3arajibHeH-
Ha piBHsAHHA Bioprepca. Bukopucranus ysarajgbHeHOI cumeTpil 103BOJIH-
JIO OJIepKaTH HOBI TOYHI PO3B’SI3KU, IO ONMKUCYIOTH PISHOMAHITHI XBUIHOBI
CTPYKTYPH.

In this paper the conditional symmetry to a hyperbolic generalization of
Burgers equation is studied. Employment of the generalized symmetry
enabled to obtain new exact solutions, describing the evolution of various
wave patterns.

1. Introduction. In last few years we dealt with different methods of
obtaining analytical solutions of nonlinear PDE’s that are not completely
integrable [1-3|, paying special attention to the following generalization
of Burgers equation (GBE) [4]:

TU — KUz + Auty, + Buy + Hug, = f(u).

Here and henceforth lower indices mean partial derivatives with respect
to corresponding variables. The classical symmetry methods [5, 6] are
very popular in obtaining exact solutions to nonlinear PDEs, but for non-
zero constants classical symmetries of GBE are reduced to the generators
of translations 0; and 0,, giving rise to travelling-wave solutions. So in
this study we proceed further on and look for solutions which cannot be
described in terms of travelling waves. To do this we employ so-called
Q-conditional symmetry methods [7-11].
Let us consider equation

F(z,t,u,uz,ug,...) =0. (1)
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It is of common knowledge, that within the classical Lie algorithm [5, 6]
we look for the operator

Q = 10, + &0; + 90y, (2)
such that
QF|F(w,t7u,um,ut,..4):0 = Oa (3)

where Q denotes the proper prolongation of Q.
Looking for the Q)-conditional symmetry, we pose the additional con-
dition:

Qu(z,t) —u) =0=& uz +Sur — ¢ (4)
and solve the equations:

QF | F(atyusun .. )=0, @=0, @1 =0, @2=0,... = 0, (5)
where @ = 0, Qiu = 0, Qau = 0, ... denote equation (4) and its

differential consequences of the corresponding orders. The additional
condition allows finding much wider classes of reductions to GBE.
2. Brief overview of the cases. We deal with the equation:

TUtp — KUgy + Auug + Buy + Hu, =
= f(u) = Ao + A+ Aou? + Azu’. (6)

To examine the conditional symmetry of (6), we consider it together
with the equation (4). Here &1, &2, ¢ depend on the variables z, t, u.
We assume that 7, k, A, A3 are non-zero and examine symmetries of the
system (4), (6). Let us notice, that whenever & (or &) is non-zero, it
can be scaled to 1.

Case I: &, =1, & # 0. Using (6), (4) and its differential consequen-
ces we can eliminate u; and all the second derivatives of u(t,z)!. After
computing the prolongation of @ and performing the splitting procedure
we obtain four determining equations:

el = 3f(u)(/€ - Tg%)glu + T¢2(27—£1§1u2 + ﬁgluu - Tgfgluu) -

ILet us notice that in case when x — 7—5% = 0 the above procedure fails. This
situation is thoroughly examined in section 3.
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— 267€1u¢e + 2776 E1udy + By — 2HTE €1t — 2AurE (Gt +
+ Br&iey + 267¢uny + 2726 dulre + 27261 61° + 26T B —
— 2728 Gy + (272} by + 2761 (K — 1o (H + Au —
—27€11)) = K(A + 2By — 27€100) + TEN(A + 4(B + Tu)1u—
— 27&10)) + KTé — T°E 1w — Hi&1a — Aukéiy + 2BRE 610 —
— H7&3&1, — Auté &1, + 4RTE Gt — 267616, + 267 hau —
= 267&; bau — K E1aw + KTE E1aa = 0,

2 = —7¢*(261(B 4 Té1u)é1u + Kbruu — TE Pruu) — Brgi+
+ Br&ig — 2726190 (610 — KT (du + 7283 (Y — Hrih —
— Aukdy + HTE ¢y + AuTEl by + 257 (E10n — 26T 1610 +
+ 26781 ¢ain + F(u) (K + 7ED) (Pu + 2(r&1 (€1t + K1a)) +
+ ¢((k = 76 f'(u) = 2(= (7 f(w)€r&1u) + TE (TE1udr + (B +
+ TGults = T2 bou + K(Thru — Té1ude + (B + Tou1s))) +
+ K2 Pre — KTE fua = 0,

e3 = —47°96 €Y, — 261u((H + Au)k + 76 (B + 7y —
— 7€ (H + Au — 27&1; — k€ (B + T(¢y — 27&12)) + (K —
— 1) (k= 7€) bun — 2701 Erun + TE1 (1t + KE1at)) = 0,

ed = 276162, + K€iyu — TE2E1yu = 0.

Since the first three equations are very complicated, we start our
analysis from the last and the simplest one.

Case Ii: &, # 0. Introducing the new function &, = ¥(£;) and
consequently &;,, = U/(&)P(£1), we obtain the integrable equation:

27610 (61)” + R T (€) V(&) — TETV (&) T (6r) = 0. (7)
Equation (7) is satisfied by the following function:

& = \/Etanh (VETer(z,t) (u+ co(z,t)). (8)
Function ¢ can be calculated from e3=0. Unfortunately e1=0 gives us

either 7 =0 or k =0 or A3 = Ay = A = 0. So all the possibilities are in
contradiction with our assumptions.
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Case Iii: &1, = 0. To solve e4 = 0 we can also put &, = 0. Then the
third determining equation (e3 = 0) takes the form: (k — 7£2)¢y, = 0.
Since (k — 7¢2) # 0, then ¢, = 0. In other words, ¢ = a(x,t)u + b(x,t)
and the remaining determining equations are as follows:

el = —(Ak(ua + b)) + At(ua + b)EF + 2x7€rar — 2728 ay +
+ Bréyy + 2nTalyy — 2HTE (14 — 2Aut&i &1y + BrETy +
+ 27208761, + 2726165, + KTé 1w — TOE e + 26%a, —
— 267€ ay — HrE1y — Aukiy + 2Br&1 €1, + 46Tal1&10 —
— H7€1€10 — Aut€ié1s — 2RT€1E7, — K*€1a0 + RTENE100 = 0,
€2 = —raf(u) + raf (W) + k(ua+b)f'(u) = 7(ua + )T f'(u) -
— 267 (ua + b)ay + 272 (ua + b)&1%ay — Br(uay + by) +
+ B1é}(uay + by) — 2B7(ua + b)é1 &1y — 27%a(ua + b)Er & +
+ 27 f(u)é1€re — 27281 (uap + by)€1y — KT (uay + by) +
+ 7262 (uay + b)) — He(uag + by) — Auk(uay + by) +
+ H7& (uag + by) + Autéd (ua, + by) + 267 (€14 (uay, + by) —
— 2Br(ua + b)&1, — 267a(ua + b)&1, + 26 f (u)é1y —
— 267 (ua; + by)érp + 267E (Uag + by)ére + K2 (Uage + bpy) —
— KTE2 (U + Dys)-
Taking into account that f(u) = Azu® + Aau? + A\ju + Ao, we collect
the terms at different powers of u. Nullifying them, we obtain (among
others) the following equations:
a(a,t)(k — 761)° + 2761 &1y + KErp + TEKEL = 0,
a(x,t)(k — 7&7) + 76161 + K1z = 0.

The above system can be presented in the following equivalent form:
a(r,t) = &1z, §16§12 = &t

The second equation is a model equation of gas dynamics. Its general
solution is as follows [12]:

r =t& + (&),

where ®(+) is an arbitrary function.
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For @(51) =0
&z, t) =x/t, alx,t)=—1/t

and remaining equations of this group are satisfied providing the follo-
wing conditions are fulfilled:

b t)—_>\2 B—0, =22
TS Ve R A YOV

—3H)\s3 A3

A= A= 2,

o T3

Using the ansatz

u(.]j t) _ —)\QLC + 3)\3R(%)
T 3\37 ’

we get in this case the reduced equation

Ao (k€] — T)R" (&) + 3H X361 R (1) R(&1) + Ashe R(&1)® +
+ 4kXo&1 R (€1) + 3HA3R(€1)? 4+ 2602 R(&1) = 0. (9)

Equation (9) is a nonlinear non-autonomous ODE which is, generally
speaking, nonintegrable. A particular solution can be obtained using
the ansatz-based method [1], slightly modified for the purposes of non-
autonomous case. Thus, we represent the solution in the form

_ p
R = @y opla@)) (10)

The numerator of equation (9) contains then different powers of
Exp («(£1)). Splitting the equation we can calculate the constants:

p::t\/Qli/Ag, H::F2/3\/2I€/)\3)\2,

and the function ¢(£;). The simplified solutions are as follows

V26F (&)
VXs(F(&) + Ve —7)
NGT
VAs(1+ F(&)/k€E — 1)

where F (&) = arctanh (y/k/7&1).

R(&) =+

R(&) =+
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Case II: & =1, & = 0. With these assumptions determining equati-
ons are as follows:

el = ¢uu =0,

€2 = f(u)py + Bor — o(f'(u) — 27¢su) + T +
+ H(bx + Au¢m - ’“bx:r =0,

e3 = A¢p — 2k¢4y = 0.

From the firs equation we get the representation for u:
oz, t,u) = alz, t)u + b(z,t).
On virtue of this, the last equation becomes as follows:
Alb(z,t) + a(z, t)u] — 2ka,(z, t) = 0.

Since a(z,t) and b(z,t) are independent of v and A # 0 we must put
a(xz,t) = 0 and as a consequence b(x,t) = 0. The condition (4) gives
ut(x,t) = 0 and then u = u(x).
Case III: & = 0, & = 1. We get in this case three determining

equations:

el = ¢uy =0,

€2 = ¢y = 0,

€3 = AQ? + f(u)gu + Bér + T + Hoy + Augpy —

— o(f'(u) + 2K¢zu) — Kdze = 0.

From the first two equations we obtain that
oz, t,u) = a(x)u + b(z,t).
The last equation then takes the form:

af(u) + A(b+ au)? — 2kaz (b + au) + Bby + H(azu +b,) +  (11)
+ Au(azu + b)) — (b+ au) f'(u) + Tby — K(agzt + byy) = 0.
Expression (11) can be splitted by powers of u. The coefficient of u? is

—2\za(x) while that of u? is —Aga+ Aa® —3\3b+ Ad’. If we put a(z) = 0,
then this implies b(x,t) = 0 and we again encounter the situation where
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u is function of one independent variable. So we rather put A3 = 0,
A2 # 0. Then a(z) can be easily calculated:

Ao
)\26 A

= —— 12
Ae™F — ereen (12)

a(z)

Nullifying the coefficient of w in (11), we obtain a first order linear equa-
tion, which gives us the form of b(z,t):

g

e F (At (—AH + ko) + A2 a(1)) (13)

TXo

b(z,t) = At — 4.5

Substituting (12), (13) into (11) and equating to zero the coefficient
of u® (the free term), we obtain a very complicated expression which
determines an unknown function ¢ (t). To our luck, this expression can
be splitted as well. This time we equate to zero coefficients of e3°1*z,
edrr2/A | g2ehatada /A ap( e(c1422/4)A2 (equations obtained this way we
denote as (eqnl)—(eqn4)).

Solving (eqnl) we get

_

Ao 1

(AH — kXo)(A%N) — AHXy + K)A3). (14)
Adding (eqn2) to (eqn3), we obtain the expression
A [H/\Q — Cg(t)] [)\2 (AH — I*i/\g) — ACg(t)] =0.

Thus, co(t) must be constant. Under this assumption we finally solve
equations (eqn3)—(eqn4) and conclude that

Cy = )\Q(H — K/\Q/A)

Now equation (4) takes on the form

Age 3 T No(—AH + £))
e A ea \o(— K
Uy = :1:)\3 U+ 2 Ay 2 . (15)
Ae 2 — el A2(er2e1 — Ae7a™)
Solving (15), we obtain:
1 2ip
=5 [—AH 4 kg + A2 (ecw ~ Ae Az) 03(15)} . (16)
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Fig. 1. The example solution of the form (16), A = X = c=7 =k = 1,
H:—l,C4=C5=0.

Finally, inserting (16) into (6), we obtain determining equation for un-
known function c3(t):
A% (14 (t) + Bcy(t)) — A%chacs(t)? —
— (A%X\] — 2AHXy + 2603)c3(t) = 0, (17)

where ¢ = e“*2. Some special solutions to this equation can be easily
found. Let us introduce the new variable g(c3) = ¢4(t). Then ¢4 (t) = ¢'g
and (17) becomes as follows:

A%(rg'(e3)g(es) + By(cs)) — A%chacs —
— (A2)\1 — 2AH)\2 + 25)\%)03 =0.

For B = 0 it can be solved just by two integrations:
/Tg'(03)g(03)dg — A%choch — (APN\] — 2AH g + 26A3)cades =
=1g(c3)® - %AQC)\ch — (AP = 24H)X; +26X3)c] = cs. (18)

Returning back to the variable c3(t) we obtain:

s (t) = 4/ asc3 + aacl + ao, (19)

where a3 = 2cha/(37),a2 = (A2\1 — 2AH\s + 26)03))/(A%7), ag =
2¢,/(A?7). After integration the function c3(t) can be written in terms
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of elliptic functions. In case when ¢4 = 0 we get:

-2 3(t
t 4+ ¢s = —— arctanh M.
£/ a9 a2

Under additional conditions A =X =c=7=rk=1,H=-1,¢5=0
the solution of the GBE takes the form:

w(z,t) = 2 + (exp(z) — 1) (12—5sech2 (@t)) : (20)

and it is illustrated in Fig. 1.

3. Solutions of the case & =1, kK — Tff = 0. Let us consider
system (6), (4) in the case then & =1, & = e\/K/7, e = £1. After using
the condition (4), together with the proper differential consequences,
equation (6) becomes as follows:

[H — Ben/Kk/T + Au — 2e/KTdu|uz +
+(B4+7¢u)p+ T — eVkThr — f(u) = 0. (21)

Next we denote the coefficient of u, by k1 and the rest of (21) by k2.
Solving the system k1 = k2 = 0 we get:

1

with an extra conditions
—B2%k 4+ H?1 4 24 3/2
No = 1/2¢(B + eH\/rj7), A\ = 20T T cevhr”
KT

N _ A(BH — eB\/K/T) ) _A72
2T 8k ’ 7 8k

To calculate the solution u(x,t), let us return to equation (4):

2
ug + \ K/Tuy = ¢ = ag + au + agu’,

where ag = ¢, a; = (H\/T — eBy/K)/(2e\/kT), aa = A/(4e\/kT). Writing
it in the characteristic form

dx _ﬂ_ du

w/T 1 ao + a1u + asu?’
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Fig. 2. Temporal evolution of solution described by formula (25) in case when
I'(w) = sin[2.25w].
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Fig. 3. Temporal evolution of solution described by formula (25) in case when
Mw) = —w?.

11 ! i
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7 3 5
Fig. 4. A blow-up regime described by the formula (26) in case when I'(w) =
—3.75w> + 5.
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we easily get the general solution

K du
x4+ P( /{/Tt—m):\/:/cww, (22)

where W(-) is and arbitrary function. Below we present some special
solutions of (22).
For A=7=rx=¢e¢=B =1, H=0 equation (4) takes the form

(u? —2u+4c) . (23)

Ut + Uy =

A~ =

General solution of this equation depends on whether A = 1 — 4c¢ is
positive or not. For ¢ < 1/4 solution of (23) is as follows:

ugG(w)e“”@ —uy

Gw)er s —1 24

u(t,z) =

where u; = 1+ VA, ug = 1 — /A, G() is an arbitrary function of
w =z — t. Putting ¢ = —2 and G(w) = —e''@) we obtain the formula

)
2 —exp[3z/2 + T'(w)]
)

(
t) =2 25
u(@, ) 1+ exp[3z/2 4+ I'(w)] (25)
For ¢ = —2 and G(w) = ' “) we get the solution
exp[3z/2 4+ T'(w)] + 2
) =2 . 2%
u(, ) 1 —exp[3z/2 + T'(w)] (26)
If ¢ > 1/4 then solution to (23) is as follows:
Bz
u(x,t) =1+ Barctg T +Gw)|, (27)
where 8 = /|1 — 4c|. This solution is always singular.
If ¢ = 1/4 then solution to (23) is as follows:
(x,t) =1+ . (28)
u(z,t) = —
Gw) -7

This solution is also singular.
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Let us give examples of solutions corresponding to formulae (25)
and (26). Thus, inserting I'(w) = sin[2.25w] into equation (26), we obtain
an oscillating kink-like solution, shown in Fig. 2. For I'(w) = —w? this
solution produces a “dark” soliton with growing “support” (Fig. 3).

In contrast to (25), solution (26) is always singular. For I'(w) =
—3.75w? + 5 its evolution is shown in Fig. 4, in which we see how an
initial localized wave pack grows in amplitude and in a finite time gives
rise to a blow-up regime.
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