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The problem of the partial stabilization of nonlinear control systems de-
scribed by the Ito stochastic differential equations is considered. For these
systems, we propose a constructive control design method, which provides
the partial asymptotic stability in probability of the trivial solution of the
closed-loop system with respect to a part of state variables. Mechanical ex-
amples are presented to illustrate the efficiency of the proposed controllers.

Y poboTi po3riiaHyTO 3aaady cTabiaizaril moa0 YJACTHHU 3MIHHUAX JJIs He-
JIHIHHAX KEePOBAHMUX CHCTEM, sIKi ONMCYIOTHCS CTOXAaCTUIHUMU Iudepen-
niaJbHUMU piBHsIHHAMEU [T0. 3amporoHOBAHO KOHCTPYKTUBHUN METOJ, 1O~
Oy/10BU (PYHKIH 3BOPOTHOrO 3B’SI3KY, IO 3a0€3MEYyI0Th YaCTKOBY aCUM-
NTOTUYHY CTIMKICTh 38 HMOBIPHICTIO TPHBIAJIbHOTO PO3B’S3KY BiAIOBiIHOT
3aMKHYTOl cucTeMu. KeKTUBHICTE Oflep:KaHUX 3aKOHIB KepyBaHHS IIPO-
LTIOCTPOBAHO HA MPUKJIAIAX MEXaHI9YHUX CHUCTEM.

B pabote paccmarpuBaeTcs 3a1ata CTaOUIM3AINNA OTHOCUTEIHHO YaCTH e~
PEMEHHBIX JIJIsI HeJIMHERHBIX YIPABJISEMbIX CUCTEM, KOTOPBIE OITACHIBAIOTCS
croxactuaeckuMu nuddepenuanabubivu ypaBaenusmu Vro. Ipengoxen
KOHCTPYKTHBHBIA METOJ, ITOCTPOEHUsT (DYHKIMN OOpaTHOi CBsi3m, obecrie-
YUBAIOIIMX YACTUIHYIO ACCHUMIITOTHYECYIO YCTONYMBOCTH IO BEPOSITHOCTH
TPUBUAJIBHOIO PEIIEHNsI COOTBETCTBYIONIE 3aMKHYTON CHCTEMBL. D der-
TUBHOCTH IIOJIyYEHHBIX YIPABJICHUN NPOUIIIOCTPUPOBAHA HA MEXaHHYe-
CKHUX I[I[PUMEPAX.
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A Introduction

To construct adequate mathematical models that describe the behav-
ior of real dynamic processes and analyze their stability properties, it is
necessary to take into account the effects of uncertainties and random
disturbances. The latter leads to the need to study systems of differen-
tial equations with random perturbations. Here, qualitative methods for
investigating the asymptotic behavior of solutions of systems of differen-
tial equations with random disturbances are useful. Lyapunov methods
for analyzing the stability of stochastic systems have been developed by
many authors (see, e.g., [1}|2] and references therein). In particular, the
concept of control Lyapunov functions and Artstein’s theorem |3| have
been extended to stochastic differential equations in [4|. In [5], a crite-
rion for stochastic finite-time stability via multiple Lyapunov functions
has been obtained.

Partial stabilization problem arises in tasks when only the stability
with respect to some variables is needed for a desired performance of
the system. This task is also crucial when the system is not stable in
the sense of Lyapunov, but asymptotically stable with respect to a part
of variables [6{19]. Therefore, the problems of partial stability and sta-
bilization of motion are highly important in engineering applications,
cf. [10||11]. In the paper [9], conditions of partial stability in probability
for the Ito stochastic differential equations have been obtained by Lya-
punov’s direct method. In 12|, sufficient conditions for partial stability
of stochastic reaction-diffusion systems with Markovian switching have
been derived.

In this paper, we consider the problem of stabilization of the Ito-
type stochastic differential equations with respect to a part of variables.
Our goal is to propose an efficient control design scheme for the above
problem. To achieve this goal, we present an extension of the universal
stabilizing controllers from [13] to the problem of partial stabilization of
stochastic systems in Section 3. Our main theoretical contribution will
be applied to mechanical examples in Sections 4 and 5.

B Notations and Definitions

Throughout this paper, let w(t) € R* (¢ > 0) be a standard k-dimensional
Wiener process defined on a complete probability space (2, F, P), and
let {F:}+>0 be the complete right-continuous filtration generated by w.
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Consider a control system described by the Ito stochastic differential
equations:

da(t) = (f(z) + dt+zoz )dw; (t (1)

where = (z1,...,2,)T € D C R" is the state and u = (uq, ...,u)T €
U = R” is the control. We assume that 0 € D, ¢;(0) =0 for i = 1, ..., k,
and the maps f : D — R™, g : D — R"** 5, : D — R" satisfy the
Lipschitz condition on every bounded domain X C D.

For a map h: D — U, h(0) = 0, we introduce the closed-loop system
for (1) with the feedback law u = h(z):

dz(t) = (f(z) + ))dt + Z o (@) dw; (t (2)

If & is Lipschitz continuous on every bounded X C D, then there exists a
unique strictly Markov process 25 (¢) which is a solution of (2)) under the
initial condition z%%(s) = & (see, e.g., [15|). We relate with the control
system the operator

n n

L, = Z(f( )+g(z) Z (91' 8%7 [cij(x)] = O’(:C)O’T(:E).

=1 Jj=1

In the sequel, we will study stability of the trivial solution of
with respect to the variables x1, xo, ..., Z,,. Denote these variables as y =
(Y1, -y Ym)T € R™ and the rest as z = (z1,...,2p)7 € RP, m +p = n,
then z = (y7,20)7, 2o = (¥d,28)7, and ||z|| = (23 + ... + 22)Y/? =
(Ilyll? + [1212)172.

We assume also that the solutions of |l are z—extendable in a closed
domain D = Dy, where

Dy ={z eR" : ||lyt)|| < H, z € RP}, H = const > 0.

It means that if z(¢t) € Dy is a maximal solution of system ont €
(71, T2) with some admissible control u € L (1q, 72), then either ||y(¢)|| —
H as t — 75 almost surely or 79 = oo. This kind of z-extendability
assumption is natural in the problems of partial stability |6]; it is usually
satisfied for well-posed mathematical models in physics whose trajectories
do not blow up in finite time with bounded control.
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Let us introduce the standard class of comparison functions I, whose
elements are continuous strictly increasing functions o : RT — R such
that «(0) = 0. We will extend the concept of a control Lyapunov func-
tion [3}4}/13/14] to the problem of partial stabilization of stochastic sys-
tems as follows.

Definition B.1. A function V € C?(Dy;R) is called a y-stochastic con-
trol Lyapunov function (y-SCLF) for system , if there exist a;, 81, B2 €
KC such that

Aulllyl) = V(@) < Ballyll),  inf LuV(2) < —adllyl]),

for all z € Dgy.

Throughout the text, B(x;d) denotes the §-neighborhood of a point
x e R".

Definition B.2. A function V € C?(Dy;R) satisfies the small control
property with respect to y if, for any € > 0 and any 2o € M = {z|y = 0},
there exists a § > 0 such that

v € Blroid) = inf L,V(x) < ~ally]).
u||<e

Definition B.3. [9|/16{/18] The solution = 0 of system is called
y-stable in probability if, for all s > 0, > 0,y > 0, there exists a 6 > 0
such that £ € B(0;9) implies

P{sup Iy (O] > e} <7

Definition B.4. [17||18] The solution = 0 of system is called
asymptotically y-stable in probability if it is y-stable in probability and

i £s =0} =
P{lim Iy (6)] = 0} = 1
for all £ € B(0; A) with some constant A > 0.

C Main result

The following result generalizes the constructive proof of Artstein’s the-
orem (13| for the problem of partial stabilization of stochastic systems.
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Theorem C.1. Let V € C?(Dy;R) be a y-SCLF satisfying the small
control property. Then there exists a continuous feedback law h : Dy —

R*, h(0,2) = 0, such that the trivial solution of the corresponding closed-
loop system (2) with u = h(x) is y-asymptotically stable in probability.
The feedback law h(zx) is given as follows:

0, b=0,
. 1 1
hi(e) = § — bz (a+ (@ + [BD3), b#£0,2a2 + PIDE > allsl)  (3)
72HbT"”2(2a+a(HyH)), otherwise,

where

a@) =3 fil@)? 8% ) 1 Z 0o &Sx)

D) =Y 05T be) = tr (@) i) (@)

Proof. The proof of continuity of h(z) in goes along the same lines
as the proof of Theorem 4 in [14].

Let us evaluate the operator £,V for using the feedback law u =
h(z):

CL(:Z})7 b= 07
L1V = § (@) + b))%, b 0.2(a” + ) > aly):
7%“(“9”)» otherwise.

As V(z) is a y-stochastic control Lyapunov function, the following in-
equality holds:

1
LV < —§a(|\y|\) for all x € Dg.
Using Gronwall’s inequality, we have:
By 0> < k(e — s)els RPN < N N0,

where E is the expectation in the probability measure P , y&5(t) is the
y-component of the solution 25:%(¢) of (2)) with the initial data 25%(s) = &.

Putting § = ln(%)ﬁ, we get
E|ly®)[?

P{supi>,|ly(t)|| > e1} < 2 < €2.
i
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Let 7. = inf{t : |[y*()| > e}, 7=(t) = min(7., t).
From Dynkin’s lemma |[15], it follows that

7 (t)
EWﬁﬁnwnfwa:E/ L1V (25 (u))d.

Since £,V (z) < —3a(|ly|]), we will get
BV (a**(1:(t))) S V(€), t=s. ()

The above inequality can be rewritten as

/<tal(uyfﬁS(TE)H)P&s(dm+/>tal(llyf*“"(t)\l)Pg,s(dw) < V().

Hence, oy (e)Pe {1 <t} < V().
From the last equality, due to the continuity of the function V'(x) and
the equality V(0) = 0, it follows that

lim P&S{TE < t} =0.

So, the equlhbrlum x = 0 of system (2) is y-stable in probability.
From it follows that the random process V (2%*(7.(t))) is a non-
negative 5upermartmgale and there exists the limit

Jim V(@€ (7.(6))) = (©)

with probability 1.

From the set of sample trajectories of the process 25°(t) we take the
subset B of sample trajectories such that for any xf’s(t) (i=1,...,n) the
following equality holds: 7.(t) = ¢, € RT. Then it follow from the above
assumptions that

hglo P: {B} =1, (7)
where fT §y ,
and , we have
) _ 1 £, _
t%mewnmﬂxW—n ®)

Note that V(z) is a y-stochastic control Lyapunov function, so for all
trajectories from the set B, except a set of probability 0, the following
property holds:

lim [y*(¢)|| = 0.

t—00
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From the assumption of z—extendability of solutions and , we ob-
tain n = 0.

So, limy 0 ||y**(2)|| = 0. From this property it follows that the zero
solution of the closed-loop system is y-asymptotically stable in prob-
ability. O

D Inverted pendulum with a moving mass

To illustrate possible applications of Theorem 3.1, we consider a mechan-
ical system consisting of an inverted pendulum (carrier body) and a point
mass m moving in the direction perpendicular to the axis of symmetry
of the carrier body (Fig. 1). It is assumed that the mass m is suspended
by a spring with the stiffness coefficient sr.

Figure 1. Inverted pendulum with a moving mass.

We will use the following notations: M is the mass of the carrier
body, ¢ is the angle between the axis of symmetry of the carrier and the
vertical, y is the displacement of the point mass, and ¢ is the distance
between the fixed point and the suspension of the mass m.

Let us first derive the equations of motion of this mechanical systems
by using the Lagrangian formalism. The kinetic energy of the system is

T 62 2
T= (5 + m(fﬂ’v G+ S5+ mi,

where I is the moment of inertia of the carrier body with respect to its
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fixed point. The potential energy is
Mg
U =
2

Then the Lagrangian of the considered system takes the form

- (T m(P+y?)
L_T—U—<§+f

o, .
cos  + Y +mg(fcosp —ysiny).

) >+ 5y2 + mlpy—

7 g M .
—§y — ?—i—m Lg cos p + mgy sin .

We now apply Lagrange’s equations in the form

d OL _
ail\ag) — 8, =0
d oL OL

i \ag) 9y = Fu

where F), is the control force applied to the mass m.
This leads to the following equations of motion:

¢ = Framz (—2mydy — mlyp? + by + 259 sin o+
+mgy cos o —F,),

y= I+my z (2my¢y + méycp — sely — M gin 4

+(F, — mgy cos ) + I+my (yg@ zy + gsinp)+

+I+7ny (G5 +9°) Fu +my*@® +y %+ y*mgsin ¢).

By replacing

My
(=2mypy — mlyp® + sly + 9 sin © + mgycosp — LF,),

- I+ my?

we obtain the following equations with respect to the new control v:

5=,
= —(0+ Lt )v+1+my (23 3¢ + 2mEM (L

m

+y )g51n<p) 2yw + gyceosso.

Let us rewrite the above equations of motion in the form & = f(x) +
g(x)v, where

L1 12 3 0
T T 0

r= ol =gl F@ = e = ) . )
z) |y a(x) — - L
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(2) 1 93 +2m+M I+ 9 .
)= —> 203+ ——— [ — + 23 | gsinz
1 I +ma3 2 2m m ' 2)9 !

2T2T3T4  gT2 COSTY
l l '

It is easy to see that system @D admits the equilibrium z = 0 with
v = 0 (upper equilibrium). We will consider the stabilization of the
upper equilibrium of the carrier body in the sense of partial stabilization
problem with respect to the variables (z1,z3) by applying control to the
point mass.

To take into account random effects, we substitute the stochastic input
v = u + Azgw(t) formally into system @), where w(t) is a standard one-
dimensional Wiener process. As a result, we obtain the following system
of stochastic differential equations:

d$1 = $3dt,
dl‘z = 1‘4dt,
dzs = udt + Azsdw(t), (10)

doy = <(_£ _ I+my Yu+ q(z )) dt — (0 + %))\xgdw(t),

where u is treated as the control.
Since our goal is to steer the variables ¢ and ¢ (i.e. x; and z3) to
zero, we propose the following quadratic Lyapunov function candidate:

2V (x) = (ki + k3 + ko)a3 + 2kywyw3 + (ko + 1)223,

where k; and ko are positive constants.
Let us define the functions a(z) and b(z) according to :

Viz) 1 ¢ (@)
Zfz &Bl + 2 Z cij (@ 871835]

1,7=1

= (kiws + (ko + 1)a1)xs + (k3 + ki + ko) A?23,
b(z) = (k2 + k2 + kp)xs + kyay.

According to Theorem 3.1, we propose the feedback control law for
system in the form (3) with a(||yl)) = Yllyl?, [|yll?> = 23 + 22, v > 0.
So, the equilibrium z = 0 of the corresponding closed-loop system ,
is asymptotically stable in probability with respect to (z1,x3) by
Theorem 3.1. Simulation results for the closed-loop system ,
with k1 = 2, ko = 1 are presented in Fig. 2. These simulations have been
performed in Maple by using the ItoProcess(-) function.
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6z

Figure 2. Components x; and x3 of a sample path of the closed-loop sys-

tem , .

E Stabilization of a three-wheeled trolley by a stochas-
tic feedback law

Figure 3. Three-wheeled trolley.

Consider a mathematical model of the three-wheeled trolley whose
position is determined by three coordinates: (z1,x2) are coordinates of
the midpoint between the steering wheels, and x3 is the angle between
the axis of symmetry of the trolley and the z;-axis, cf. . A cylindrical
hinge whose axis is perpendicular to the axis of symmetry of the trolley is
mounted above the point (z1,x2) (Fig. 3). A weightless and inextensible
rod can rotate in this hinge, and a point mass is attached to the other
end of the rod. We denote the angle between the vertical axis and the
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rod by a. The motion of the trolley is described by the rolling without
slipping conditions:

dxy = (uy + ug) cos x3dt,
dxy = (u1 + ug) sin zgdt, (11)
dil?g = (u1 - Uz)dt,

where the vector u = (uq, uz)T € R? is treated as the control.
Following , we also write Lagrange’s equation with respect to the
angle a:

G — (21 cos g + Xa sin s + 2’5 sin )2z cosa = —sin av. (12)

Note that the considered model belongs to the class of nonholonomic
systems which, as it is well-known, cannot be stabilized in a neighborhood
of the equilibrium position by a deterministic continuous state feedback
law (see, e.g., ) In the sequel, we will study the stabilization problem
with respect to a part of variables in the stochastic sense.

Let us denote the relative angular velocity of the rod by w = & and
perform the following change of variables in , :

Z1 = X3,
Z9 = 1 COS T3 + Tosinxs,
23 1= X1 SN T3 — T COS X3,
Z4 = Q,
25 1= W,

vV i= U1 — Uz,
12 (u1 + ’LLQ) - (u1 — U2)Z3.

Then the equations of motion take the form:

21 =1,
252 =V,
2"3 = V129, (13)
2'4 = Z5,

Z5 = (Vo + 123 + V1 8in 24) 1 €OS 24 — sin z4.
We randomize system (13) by designing the control inputs

vy =y,
Vo = VU2 + )\Zgﬂ}(t),
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where w(t) is treated formally as the derivative of a standard one-dimensional
Wiener process w(t). Then we rewrite the stochastic control system as
follows:

le = Uldt,

dzg = vadt + Azadw(t),

ng = ’Ulzgdt,

dzy = z5dt,

dzs = ((v2 + v123 + vy 8in 24)v1 COS 24 — sin z4) dt+
+Azav1 cos zgdw(t).

(14)

We consider the partial stabilization problem for system with
respect to the variables z1, 23, 23.

To design stabilizing controls vy, v2, we take a control Lyapunov func-
tion candidate of the following form [21}:

22
22+ 23\"" %
Eral .

1
V(z) =223 — 5(2’% +22) (14 22)+2 (
Then we define the functions a(z), b1 (2), b2(z) according to :

5
1 PV(z) 1., ,0*V(z)
a(Z) - 5 Z CZ](Z) 62’282’] - §>\ ) 6222 )

2
2, 2\ 1+ 2 2
4(EEED 7T 14 3z

+ 29 (2 — (zf + zg)z3—|—

|2F + 23]
2
2, L2\ 1+F 2, .2
2o | 2— (22 +23)23 + 2 (Ll —;22|) z31In (L1 ;Zﬂ) ,

=3
4 (%;zi\)” T+ E)z
|28 + 23
b(z) = (b1(2), b2(2)).
Thus, the conditions of Theorem 3.1 are satisfied with the above choice
of a(x), b(z), and a(||lyl)) = Y|lyl|?, lyl|* = 23 + 2% + 22, v > 0. Numerical

simulation results for system with the feedback law are presented
in Figs. 4-5.

bo(2) = —22(23 +1) +

b
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F Conclusion

A constructive proof of Artstein’s theorem has been extended to the prob-
lem of partial stabilization of the Ito stochastic differential equations.
This construction allows effective computing of stabilizing feedback con-
trols if a control Lyapunov function in the sense of Definitions 2.1-2.2
is known. The control design scheme of Theorem 3.1 is shown to be
applicable to nonlinear systems with stochastic effects that describe the
dynamics of an inverted pendulum with a moving masses and a three-
wheeled trolley with an additional degree of freedom. The simulation
results, presented in Figs. 2 and 4-5, illustrate the required behavior of
sampled paths of the corresponding closed-loop systems.
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