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Lukovsky’s asymptotic formulas for the resulting hydrodynamic force
and moment are derived as if they follow from the adaptive (infinite-
dimensional) multimodal theory of the liquid sloshing dynamics in an
upright circular base container. The result is given in a tensor form in-
troduced in notations of the original paper by Faltinsen, Lukovsky and
Timokha (2016).

Busonsitecst popmyiin JIyKOBCBKOrO aJlaliTHBHOIO aCUMIITOTUYHOIO THUILY
IJ7Is PEe3YJIBTYIOUNAX TiAPOINHAMITHOI CHJIM i MOMEHTY, IO MTOB’sI3yIOThCS 3
KOJINBaHHSIMH PIJVHY ¥ BEPTHKAJILHOMY Kpyropomy Oarii. Pesyibprar npes-
CTaBJIEHO B TepMiHax IO3HaYeHb i3 opurinanpHol pobotn Panrincena, JIy-
KoBCbKOro it Tumoxu (2016).

Introduction

Linear and weakly-nonlinear and fully-nonlinear multimodal theories are
common for studying the liquid sloshing dynamics in an upright circular
cylindrical tank performing a small-amplitude three-dimensional oscilla-
tory motion. The theories reduce the original free-boundary problem
to different kinds of (modal) systems of ordinary differential equations
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with respect to the hydrodynamic generalised coordinates — the time-
dependent coefficients in a Fourier—type (functional) presentation of the
free surface. By getting either transient (solving the Cauchy problem)
or steady-state wave (time-periodic condition) solution of the modal sys-
tems makes it possible, using the aforementioned Fourier representation,
to describe the free-surface elevation as well as the velocity and pressure
fields. Furthermore, substituting this modal solution (the hydrodynamic
generalised coordinates) into the so-called Lukovsky’s formulas [1,[4}/5)
gives the resulting hydrodynamic force and moment due to the pressure
load on the wetted tank surface.

I.A. Lukovsky derived his formulas in the most general, fully-nonlinear
form. The formulas had to equip the so-called Miles-Lukovsky modal
theory [11|4}/5], which is fully-nonlinear and, therefore, mathematically
equivalent to the original free-surface sloshing problem. However, the
Miles-Lukovsky theory is of a rather abstract nature so that its usage is
disputable to effectively conduct numerical simulations and/or make an-
alytical studies. This was in many details discussed in reviews |1}{6|. To
facilitate analytical studies of the resonant nonlinear sloshing, the theory
had to be simplified to a weakly-nonlinear form. The simplification in-
cludes an analytical (asymptotic) reduction of both the governing (modal)
equations, which couple the hydrodynamic generalised coordinates, and
the Lukovsky formulas for the hydrodynamic force and moment. A re-
quirement consists of postulating a series of specific asymptotic relations
between the non-dimensional forcing magnitude (implies the higher-order
asymptotic scale) and the hydrodynamic generalised coordinates, which,
because some of them are resonantly excited, are characterised by a lower
asymptotic order. The procedure needs neglecting the higher asymp-
totic quantities than the non-dimensional forcing magnitude; it leads to
weakly-nonlinear modal equations and Lukovsky’s formulas. In the most
general case, the aforementioned asymptotic relations take the so-called
adaptive form.

Recently, an adaptive infinite-dimensional asymptotic modal system
was derived in [2| to describe the resonant liquid sloshing in an up-
right circular base container. The adaptive intermodal asymptotic or-
dering assumes then that all the hydrodynamic generalised coordinates
have the same asymptotic order O(e'/?) where O(¢) < 1 measures the
non-dimensional forcing magnitude. The present paper equips [2| with
the corresponding adaptive Lukovsky formulas, which were not derived
in the original and forthcoming |3| papers based on the adaptive and
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Narimanov-Moiseev—type multimodal asymptotic ordering.

1 Non-dimensional modal solution

We consider the liquid sloshing dynamics in an upright circular rigid
tank performing a small-magnitude almost periodic three-dimensional
motion with the circular frequency o. The sloshing is analysed in the non-
dimensional statement suggesting the tank radius Ry is the characteristic
size and T = 27 /o is the characteristic time.

The time-dependent liquid domain Q(t) is confined by the free sur-
face X(t) and the wetted tank surface S(t). The free-surface elevations
are considered in the tank-fixed coordinate system Ozyz whose coordi-
nate plane Ozy coincides with the mean free surface ¥y and Oz is the
symmetry axis. The small-magnitude tank motions are governed by the
time-dependent vectors v (t) = (11, 112, 03) and w(t) = (4,75, 16), which
describe the non-dimensional translatory and instant angular velocities
of the tank, respectively, and the generalised coordinates 7;(t) = O(e) <
1,7 =1,...6 determine the three-dimensional body motions.

The adaptive asymptotic modal method introduces the modal (Fourier)
representation of the free surface

¢(r,0,1) ZRMZ cos(MO) pari (¢ +2Rmz sin(mé) r,:(t), (1)

where Rz (r) = anidar (kagir) with the Bessel function of the first kind,
kari, @ > 1 are the roots of J}, (kari) = 0, and

Pari(t) ~ s (t) = 0(61/3)

are the hydrodynamic generalised coordinates. The normalising multipli-
ers ay; are required to provide the identity

2knri
Jap(kari) (k3 — M?)

Here and thereafter, the large summation indices imply summation from
zero to infinity but small indices mean change from one to infinity.

The adaptive asymptotic modal theory neglects the o(e)-terms in the
governing equations and all other hydrodynamic characteristics. A result
in [2] is a weakly-nonlinear infinite-dimensional system of ordinary dif-
ferential equations with respect to pas; and rjz; whose right-hand site is
a linear vector-function with respect to 7; and their time derivatives.

1
/ TR?UZ(T) dr=1 = a?\/[i = (2)
0
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The forthcoming derivations adopt notations from [2|. This includes
tensors in Appendix A and several shortcuts, e.g.,

cosh(kri(z + h))

Krk = kpg tanh(kprh), Zpe(z) = kppsinh(krih)

(3)
where h is the non-dimensional liquid depth.

2 Hydrodynamic force

Adopting the asymptotic modal solution and the original Lukovsky
formula for the dimensional hydrodynamic force F(¢) from, e.g., [1l{4],
one can write down

F(t) = [M1R00'2] (g—'i)o—w X Vo —wX (w X'T‘lc)—(.b X'T‘lc—’-r.‘lc
— 2w X 7¢) = [MiRoo”] (g — vo — & X 1y, — P10 + 0(€))
= [MiRoo®] (F1(t) ex(t) + Fa(t) ea(t) + F(t) es(t) + o(e)), (4)
where the dot means the time derivative in the Ozyz coordinates,
a(t) = a1(t) ex(t) + ax(t) ex(t) + as(t) es(t)
(e;(t), i = 1,2,3 are the coordinate units of the body-fixed coordinate
system Ozyz), M; is the liquid mass, g is the non-dimensional gravity

vector in the body-fixed coordinate system whose linear (= O(¢)) com-
ponents take the form

g = gnse1 — gnsez — ges, gy = —gesz = O(1); (5)

and

1
ric=— el/ xd@Q + 62/ ydQ + 83/ 2dQ
mh Q) Q) Q)

1
=Tic, T Tic, = €1 ( szpu > +eo (h ZHHi(U)

+e3 -5 + Z Z pmz + Irmz) ’ (6&)
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ric, = —3hes, Tic, =Tuc,e1 + rac,es + rac, es, (6b)
1
J1(k1n
(R— = /0 ’I‘ZRM(T) dr = ai, 12%1 )> (6¢)

is the non-dimensional liquid mass centre r;c, r;c, defines its hydrostatic
position, but ;o determines the sloshing-related mass centre motions.

Substituting , and (6b) into derives the three scalar force
components F;(t), i =1,2,3:

Fi(t) = gns — i + Shils — ™" > Py, (7a)

Fy(t) = —gna — iiy — 3hils — ™'Y Piiiy, (7b)
i

Fy(t) = —g — i3 — 207" Y (Foipor + 15;)

m,i

3 The Stokes-Joukowski potentials

The Lukovsky formula for the resulting hydrodynamic moment rela-
tive to the origin O needs to know the free-surface depending Stokes-
Joukowski potentials. The non-dimensional scalar Stokes-Joukowski po-
tentials, Q;(z,y, z; {pari, "mi}), ¢ = 1,2,3, are components of the vector-
function 2 = Q1e; + Qoes + Q3es, which is a solution of the Neumann
boundary value problem

VZQ =0 in Q(t), 0,Q2=rxn on S(t)+ X(t), (8)

where r = xe; + yes + zes and n is the outer normal unit vector. Find-
ing the scalar Stokes-Joukowski potentials is the same as getting the
harmonic functions satisfying the Neumann boundary conditions

O = yn, — zny, 00y = zng, —an,, 0,03 = xn, —yn, on S(t) + X(t),

9)
where n,,n, and n, are components of the outer normal vector in the
Cartesian coordinate system Ozyz.
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The Neumann boundary conditions @ have a specific form for the
upright circular base tank when considering them, separately, on the
bottom, wetted walls, and the free surface. On the flat bottom, n, =
ny = 0,n, = —1 and, therefore, @ transforms to

0.0 =y =rsinb, 9,0y = —x = —rcosb, 0,03 =0at z=—h; (10)
on the vertical wall, n, = cosf,n, =sinf,n, = 0 and, therefore,
0, = —zsinf, 0,05 = zcosh, 9,03 =0atr=1. (11)

The free surface (¢) is defined by z = {(r,6) = 0 or, in other words,
by the hydrodynamic generalised coordinates in . To write down the
corresponding Neumann boundary conditions, one should first introduce
the outer normal vector

n = Vayz[z = (/|| Vayz[z = (|
where, according to in Appendix B,
Nl |Vay=(2 — )| = —cos 0 9. +r~sin 0 9gC,
Ny||Vay=(z — Q|| = —sin09,¢ — r~ ' cos 0 9y, (12)
|| Vay=(z = Q)| = 1.

Using these expressions, the Neumann boundary conditions in @ on X(t)
take the following form

VQ - V(z =) =rsinf + ¢ (sinf0,¢ + r1 cos 8 9y() (13a)
VQy - V(z— () = —rcosf + ¢ (—cos00,¢ + r1 sinf 9y() , (13b)
VO V(= — ) = —uC. (130

where
VQ; - V(z—=¢) = 0.9 — 9,9 0. — r205Q; 06C. (14)

The forthcoming goal consists, after substituting into the Neu-
mann boundary conditions , of getting an asymptotic approximation
of the scalar Stokes-Joukowski potentials in terms of the hydrodynamic
generalised coordinates pysi, rars = 0(61/3)7

Qni = QOi + Qli + Q2i -I— O(E), in = O(En/g), n = 1, 2, 37 (15)

starting with the zero-order approximation, which suggests the gener-
alised coordinates pys; and rps; are zero.
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3.1 Zero-order approximation

The zero-order approximation, €g;, is an attribute of the linear sloshing
problem. There is an analytical solution of the corresponding Neumann
problem in the unperturbed liquid domain (the flat free surface with
pmi = Ty = 0 in 7 ) This solution can be found, e.g., in the
chapter 5 of |1|. For the adopted normalisation, this analytical solution
was derived into |3|. It takes the form

Qo1 = —F(r,2)sin0, Qoo = F(r,z)cosd, Qoz =0, (16)
where

sinh(k1, (2 + %h))
cosh(2k1,h)

F(r,z)=rz—2 Z %RM(T) (17)

and P, is defined in (6c).

One can see that 3 has no the zero-order component but 2; and
Q9 and similar by the coordinates r, z and differ only by the azimuthal
coordinate 6.

3.2 First- and second-order approximate 2;

The first-order approximation of the Stokes-Joukowski potential Q;, 11
from , is a harmonic function, which satisfies the zero-Neumann con-
dition on the wetted tank surface (at z = —h and r = 1) but the Neu-
mann boundary condition on the unperturbed free surface is non-zero but
derivable from by keeping the O(el/ 3)-order quantities. It takes the
form

0,011 = —02Q01¢ + 08,9010, + 17 20§Q0109¢ at z = 0. (18)
Substituting , and into yields

alel =2 ZpMi Z pa [sin 0 COS(M@)( ?»” lla - k%aRMiRla)
Mi a
— M cos sin(M@)r_zRMiRla]
+2) 1 ¥ Pa[sinOsin(m6)(R},,Ri, — k7, RmiRia)

mi a

+mecosé cos(m@)r72RmiR1a] , (19)
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where ~
P, = P,k;, tanh(3kih). (20)

Using the standard projective scheme derives the following solution

Q1= Rpr(r)Zur(z) cos(LO) Y O(liTk),(mi)Tmi(t)

Lk mi

+ > Ru(r)Zu(2) sin(10) > OGE) popara(t), (21)
lk Mi

where
1,r 2 - 2
O(Lk),(mi) = ALr ZP“{AL,ml (/\/(mvi)(la),(Lk) - k?1a)\(mi)(1a)(Lk))

+mAmL1,5\(mi)(1a)(Lk)}7 (22a)

1, 2 = 2
Otiby. i) = 3, > Pa{AM,ll (Mariyra),ar) = FlaA@riyraix))

— MAI,MZS\(AH)(Ia)(lk)} (22b)

within notations from (3) and Appendix B .

The second-order approximation 2s; is also a harmonic function sat-
isfying the zero-Neumann boundary condition at z = —h and r = 1. The
only non-zero Neumann boundary condition at z = 0 can be obtained
by the Taylor expansion in ¢ (and its derivatives) applied to . The
result is

9:Q91 = C (sin00,¢ + 1" cos 005¢) + ¢ (02,Q2010,C + 17 20220105¢)
— %82901C2 - 83(211C + OTQH[“)TC + 7”728991186( at z=0. (23)

Because 0,1 = rsinf at z = 0, two first summands in (23) are
equal. Furthermore, using the obvious Fourier expansions following from
the Parseval identity

r=3Y PuRi(r) and 1=3 P,Ri,(r),

the boundary condition itransforms to the following form
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9,001 = Z p]VIsz]{ZP sin 0 cos(M0) cos(M6) (2R R, Ri
MiN j

— klaRNleaR]VIi) — 2N COSGCOS(M&) s1n(N6)r‘2RNjR1aRM,»]
+ Z O(lfb),(Mi)“Z; [ sin(A6) cos(NO) (RlsyRiv; — kayRasRN;)
Ab

— AN cos(AB) sin(NO)r 2R 4, Ru;] }

+ Z rmzrn]{ Z P, [sin 0 sin(md) sin(nd) (272' taRmi

minj

— klaRmiRmRn ) + 2n cos 0 sin(md) cos(n@)rszanlaRmi]
+ Z O(Ab) (miyfap [ €08(A0) sin(n8) (R Ry — k3R avRaj)
— Ansin(Af) cos(nf)r~2R 4, Ron;] }
+ ZpMﬂ"n] {22 P, [sin 6 cos(M0) sin(nf) (R},; R}, Rasi + R R Rnj
Ming
— k3 RujRiaRari) + (ncos 0 cos(M8) cos(nd) — M cos 0 sin(nf) sin(M6))
X 1 RariR1aRnj | + Z Kap [O(lfb),(Mi)(sin(AQ) sin(nf)
Ab
[Rf%R' — kZbRAban] + An cos(Af) cos(n@)riQRAban)
O(lATb) (nd) (cos(A0) cos(MO) [R'yy Ry — kAR avRoi]

+ AM sin(Af) sin(M@)r’QRAbRMi)] at 2=0. (24)

The standard projective scheme leads then to the following solution

o1 =Y Ruk(r)Zek(2) cos(LO) D O 1ri) (nyPMiTni

Lk Mnij
+ 2 Ruk(r) Z(2) sin(16) [ I 2 Ol ariy.cvsyPuaipns
lk MiNj

1,rr
+ Z O (1k),(mi),( nj)r””frnj ) (25)

minj

where
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1
O(Lpl:) (Mi),(nj) — ALL ZP [ALM 1n()‘(m)(1a) (Mz)(Lk)+>‘(A1L)(1a) (ng) (LK)
— kA (nj)(1a)(ari)(Lk)) + (RA LML, — MALl,Mn);\(nj)(la)(Mi)(Lk)]
“1[ 1, 2
+> K [O(fw,(m) (Az,an [Many g, or) = KasAcan) i) ()]
Ab

+ AnA anr, Aab)(nj) (k) + O(lArb),(nJ) (Aanrr, [Noanyariy, ok
— KA A (an) (i) (L)) + AMAL,Am,j\(Ab)(Mi)(Lk))}v (26a)

1,p; /
Oy, iy, v = & SR [Marvas (wvaa ariyan
— %k%a/\(Mi)(la)(Nj)(lk)) — NA1M,lN/_\(mz‘)(1a)(Nj)(lk)]
1, -1 2
+ D Ok iy [AN,AZ (Many v ) = KasAcanyviyan))
Ab

- ANAA,NJ‘(Ab)(Nj)(lk)} (26b)

1,rr _ 2 12
Oy (mi).n) = &7 > P [A,lnmz (Nng) (1), (miy 1)
a
= A my (10) 13) 1)) + P, i N (1) ) 04|

2
+ Z O(Ab) (mi)FAb [AA nt (AL ab) (g (1k) = KAbA(Ab) (ng) (1))
- AnAn,Az/_\(Ab)(nj)(zk)]» (26¢)

3.3 First- and second-order approximate (2

Proceeding in similar way with the zero-order approximation ,
and the Neumann boundary condition (13b) on the free surface derives
the first- and second-order approximations, 15 and {299, as follows

ng = ZRLk ZLk COS L9 ZO(Lk) (M) pM7( )
Lk

+ ) Rik(r)Zik(2) sin(16) ZO(lk) (mayTmi(t)s (27)

Ik mi
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where
9 2 ~ 2
O(ka) (Mi) = A Z Pa [AlML.,( - )‘I(Mi)(la),(Lk) + kLo A (i) (Lk) (10))

- MAL,1M5\(MZ-)(1@)<L1¢)], (28a)

2, 2 D
Olity mi) = 7oy 2P (At (= Nty 10,089 + FaAmirany 1)
a
+mAM,115\(m¢)(1a)(zk)] (28b)

and

Doy = ZRL’“ )ZLk(z) cos(LE) Z O(L,C (Mi),(NjYPMiPNj

Lk MiNj
2,rr
+ D O (m, <m)7"m”“n7}
mingj
+ 2 Ru(r)Z0(=)sin(10) 3 OGS iy npP it (29)
Lk Mnij
where
oxrr 2

TR = R Z [AlMNL,(%NMz‘)(Nj)(la)(Lk)

- )‘(Nj)(la),(Mi)(Lk)) - NAML,Nl/\(NJ‘)(la)<Mi)(Lk)}

2, 1 2
+ Z Oy, (ariy b [AANLv (Man v, or — FasAan i)
Ab

+ ANAL,ANS\(Ab)(Nj)(Lk)] , (30a)

2, 2 1
O(Lrl:),(mi),(nj) = ALr Z [AlL,mn(5)‘(mi)(nj)(1a)(Lk)
a

= Nng) (1a),(mi) (LK) T nAnl,lmj\(nj)(1a)(mi)(Ll€):|
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2,r —1 2
+y O (ab),(mi) " ab [AL,An (M) g, (k) — KApA(ab)(nj) (k)
Ab

+an AAnL,j\(Ab)(nj)(Llc)} , (30b)

2, 2 2
Oy, (aiy (ng) = A Z Py [AlM,ln (KA (M) (1) () (1) =N (1), (M) (18)
a

- /\I(I\li)(la),(nj)(lk)) + (nAnn,u — MA,anl)X(la)(Mi)(nj)(lk)}
—1 2, 2
+> kg [O(sz),(Mz‘) (Aant Ny (), ax) = FapAab) (g k)
Ab

*AnAn,AZS\(Ab)(nj)(lk))+O?Xb)’(nj) (AM,IA()‘/(Ab)(Mi),(lk) *]f?«lb/\(Ab)(Mi)(lk))
- AMAA,Ml;\(Ab)(JVIi)(lk)} - (30c)

3.4 First- and second-order approximate (23

The scalar Stokes-Joukowski potential 23 is also a harmonic function
satisfying the zero-Neumann conditio at z = —h, r = 1 and the non-zero
Neumann condition on the free surface. Using the Taylor expansion
by ¢, the latter condition takes in the first (linear) approximation the
following form

0,013 = =0y = ZmRmi [sin(m&)pMi — cos(mﬁ)rmi} at z = 0.

mi

One can then get the following harmonic
Q3 = Z M Roni (1) Zimi(2) [ $in(mb) prm; — cos(m) ;). (31)

Further, the second-order harmonic approximation of the Neumann
boundary condition takes the form

0.3 = —02Q13 ¢ + 0, Q13 0,C + 120913 0oC

= Z p]V[ipNjMHJTIIi[Sin(MG) COS(NG)( i ?Vj - k%/[iRJWiRNJ')
MiNj
— MN cos(M8)sin(NO)r >R R ;]
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+ Z Tmitngm i | cos(nf) sin(nf) (kZ,; RiniRnj — RoniRnj)

mnij
-+ mnsin(md) cos(n@)rﬁRmiRn]‘] + Z {R}\liRn]‘
Minj
MK}, nk;;
X (— DN Gin(MO) sin(nf) + — cos(M8) cos(na))
KM Knj
/ / M s n
+ Ry R, ( sin(M6) sin(nf) — — cos(M¥) cos(n@))
KM Rnj
) M
+r RMianMn( cos(M8) cos(nd)
KM
no. .
o sin(M6) sm(nﬁ)” at z = 0.

Proceeding as in the previous sections derives the Fourier solution

Q23 = ZRLk ZLk COS L@

)| D O o, <m>pM”"nJ}

Lk Mmnij
+ Zle(T)ZLk bln le |: Z O(lk (M3),(N7) pszN]
MNij

3,rr
+ > Oy (o), (m)rmi’“nj} (32)

mnij
where
1 MEk3,, nk? .
037177“ ) . :7[)\ DNns (_A n M A n])
(Lk),(Mi),(ng) = AL - [ (M) (LE) LMn— + Anin, s

+/\/(Mi)(nj),(Lk) (AL,MnM“Mli - ALMn,n’fr_le)

+ Atiy gy iy Mn (Aparn MEy s — Aprank, ;) ] » (332)

1 M

03 PP
Ay K

(Ik),(M),(N§) = [AN M1 (—%M(M@(Nj)(zk) + /\/(JVIi)(Nj),(lk))

- MN AM,NZE\(Mi)(Nj)(lk)}v (33b)
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1 m

3, _ 2
O(ll:;,(mi),(nj) - /T”,.Tm [Amv"l (km)‘(mi)(n.i)(lk) - )‘l(mz')(nj),(lk))
+mn An,mlj\(mi)(nj)(lk)} , (33¢)

in which we adopted notations from Appendix A.

4 Hydrodynamic moment

According to the Lukovsky formula [1}/4], the resulting (dimensional)
hydrodynamic moment (relative to the origin O) may be written down
("'ZCO X gg = 0) as

Moz [MZRSUQ} (rlcx(gfwxvofi;o)le-wfjl-w
—w X (J1~w)f.l.w+imfw>< (iwflm))

= [MzRgag} ( Tic, X (9 = Go) |~ Ticy X Vo + (ric — Tic,) X go

— J(l) ‘w — (lw — iwt) +0(6))
= [MiR§o?] (Fa(t) er(t) + Fs(t) ea(t) + Fs(t) es(t) +o(€)), (34)

where J' = JZIJ is the non-dimensional liquid inertia tensor (J (1) is its
O(1)-order component),

1
L= Q; 0,9, dS 35
7 7mh S(t)+2(t) B (35)
and L 1
o= — QdQ, l,=— QdQ. (36)
T Jow mh JQ)

The formula (34) contains two framed terms. The first one, ¢, X
(g—gy), implies a quasi-static moment relative to O caused by a small in-
stant pivoting of the tank body by 74 and 15. The second framed expres-
sion, I, —l,,; is a rather complicated function determined by the Stokes-
Jukowski potentials. By utilising the Reynolds transport theorem and
that the normal relative velocity of the free surface u, = ¢//1+ (VC)Z,

the second framed terms re-writes in the form

1 T
wh (Lo —lut) =0 | QuudS =0, / / r [mzzg} Edodr. (37)
3(t) JO J—m
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Because ¢ = O(e'/3), getting the O(¢)-order component of should
adopt the 0(62/ 3)-order solution from the previous section.

The adaptive asymptotic approximation of the hydrodynamic moment
also requlres the zero- order approximation of the inertia tensor J3 o- Sub-
stituting (16)) into with ¢ = 0 computes J§ = {J5i;} whose the only
non-zero component 1S

h? 3 16 < tanh(1ki,h)
Jo=Jon="Jo=5 -7+ 135 —1 .
0=Jou =Joz =5 7+ — k3, (ki, — 1) )

4.1 Component Fy(t)
Using expressions for the zero- , first- and second- order

approximations and neglecting the o(e) terms computes

1 ™
/ / 7 (Qo1 + 0:Q01¢ + Q1 + 307Q01¢° + 9:Q11¢ + Qo1) |.—o{dbdr

A1, .
= QWZP T1a + Z O(N] (ml)pNijz—i— Z O(njz;,(Mi)Tniji

Niymi Ming
1,
+ Z O(Ng) (Lk), (Mz)pNJkaTmz+ Z O(nrj’; (LK) (]\/Iz)rnijkpA{i
NjLkmi njLkMi
1
* Z O(n?f(lk) (mi) g Tk mis (39)
njlkmi

where
Oy (miy = AN.am D Padaymiy (i) + ANNENTOR ) (mi
”
O atiy = Matan ) Padayvriyng) + Ak OG0y ariys
O(lj\’;f;(Lk) (mi) = 2ANLm1 Z Pu)\(1a)(Nj)(LE) (mi)
+ ANNHRI;O(I}\ITI;),(LI@),(mi) + % )‘(Ab)(Lk)(Nj)0(1};};),(mi)AALN,
+ ) Mab)ma) V) O(ehy Ly AN.mas

ab

AL, _ D 1.2
O(n?;z,j(Lk),(Mi) =Arymm Z PukiaA1a) (ng) (ari) (LK)
a



Adaptive Lukovsky’s formulas for the resulting hydrodynamic... 203

t Ak OGIE vriy iy + Xb: Aat) (2 (ni) Oy, (aiy M an
Oty (miy = Nointm Y PakTad (10)(ng) i 1)
a
+ Ann“ﬁjlo(l}fjr),(m),(m) + ; /\(Ab)(lk)("j)O(IXb),('rni)AA»l"'
The moment component Fy(t) is then computed as

F4(t) = g[%h N4 — h71 ZParla] — %hng — J()ﬁ4 — 2h71 Zpafla

1,pr o . 1,rp . ) 1,pr IO
+ D MG iy PNiTmit Y MG o ngpasit D N (may PN Tmi

1,ppr . 1,7 .
+ oY M 5 iy, PLkPMiTng + > M3y vy (v gy FikP i
LkMinj lkMiNj
1,7rr . 1, . .
D0 MG iy gy i D N (vgiy gy PLADMT s
lkming LkMinj
1,rrr LR 1,7 .
) NG iy oy Ptk mitng + D Nl tarsy v TikBaripng, - (40)
lkming lkMing
where
1,pr _ —1A1,pr 1,7p _ —1A1,rp
My imiy = = (@) Oy iy Mingy ariy = —(TR) 70005 vy
1,pr _ —1/A1l,pr AL, rp
NG miy = =@ HORT) (miy T Oty (i)
1,ppr _ —1A1l,ppr
M iy, amy = = @) OGRS (ari) (g
1,7 _ —1AL,r
My (. ovgy = =T O iy, vy
1,rrr _ —1Alrrr
Mgy (miy,(ng) = ~ (T "0y (mi (g
1,ppr _ —1A1,ppr
Ngky. iy, gy = ~ (T O (atiy ()

1,rrr _ —1/Al,rrr AL, rrr
Nty tmiy,ng) = =T Ok iy, (ng) + Oty (mg) (i)
1,rpp _ —1(Al,rpp A1,ppr A1,rpp
Naky iy ovi= — T OGS iy, vt Oy vy, anrt Oy (v )
4.2 Component Fj(t)
In similar to 7 the lo-related quantity takes the form



204 Timokha A.N.

1 ™
/ / 7 (Qo2 + 0:Q02¢ + Q2 + 307Q02¢° + 9:Q12¢ + Qo2) |.—o{dbdr

2
= =27 Zpapla + Z O(N]) (Ml)pN]pml + Z O(ngg (mz)rn]rmz

NjMi ming
2,p
+ D O wn.auabnipeepar+ D2 OGS () (i) PNTUT mi
NjLkM:i njlkmi

+ Z O?nZZ;T(Lk) (ml)"'n]karmlv (41)
njLkmi

where
O arey = — M, Z Paday iy (vi) + ANNENSOR) (i
05 (miy = =M tmn Z Pud o (miy(ng) + Bt OCT iy
O™ Ly vy = —Awewn, Y PakoAa) vy Lk ari)

+ ANvERS O iy + %; Aan(ei Ok o ML,

OBES ki = —AN1m D Pakfa A 1a) (i) mi) 1)

+ ANNENOIN T (miy. k) F Zb Mat) 1) () Oy (i AV.a

0% L iy = —2AL1 i Z Pakio M 1a) (L (mi) (nf)

+ At OLFS 1 oy + Z MmOty (L1 AAb) i) ()

+ Eb: AL.anOfh) iy Mab) (L) (n5)-
a

The moment component F;(t) is then derived as follows
Fs(t) = g[%h?% +h Z Papla} + Lhify — Joits — 201> Pupra

, 2,
+ Z M(]\Z) (M) pijmi + Z M(ngg (mz)rn]-pmi
NjMi njmi



Adaptive Lukovsky’s formulas for the resulting hydrodynamic... 205

+ D NG maybNiDyi + D NI iy

NjMi njmi
2,prr
+ Z M(N]) (LK), (Ml)kakapMz + Z M(Nj) (lk), (ml)pN]rlszmz
NjLkNj Njlkmi
2,rpr
D MGk, TrsPrermi £ 3 NG g g BNiDLepai
njLkmi NjLkMij
2,prr 2 T
D NPT+ D NG st
Njlkmi njlkMi

(42)

where

2,pp _ —1,°2,pp
MRS ariy = NGy iy = ~ () T O (ariy
M2 rr N2,71T = *(ﬂ'h) 101 TP

(nd)s(mi) = Ning),(mi) (ng),(Mi)
MG iy oy = —(TR) T OG iy (ariys
MG ary iy = =T T O ) (miy
an??Lk) (miy = ~(Th)” 10(1n7;T(Lk) (mi)’

2,p
NGy wry. sy = —(Th)~ (Ouva) (i) T O i), (Lk))

2,prr 2,prr A2,prr
NGy ), miy = —(Th)™ (O<Ny> (1), (mi) + O ). (mi), )

2,rpr 2,rpr 1/~2,rpr
+ O (), <mz>) Ne .oy = =T OG0 sy vy

4.3 Component Fg(t)

The hydrodynamic moment component relative to O is uniquely function

of (36), i.e.,
1 1 ™
- 8,5 / / TQg'Z:C 8,5( dfdr. (43)
0 -7

Using expressions and (32) and neglecting the o(€) terms computes

1 T
/ / F (sl + 0.05¢¢ + Qaal) |o—odbdr
0 —7

_ -1 - . A3,ppr
=7 § MK, (pmirmi - pmirmi) + E O (Lk),(Mi),(nj) kapMzTnJ
mi LkMing
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3,7 . N3,rrr .
+ > O nr, o) FUPMPNG + D OGS iy gy ik miTngs (44)

Uk MiNj Lkming
where
Orer _ vz o +A i) (MAL At —nA L))
(LR),(Mi),(ng) — g (LK), (M3),(nj) (Lk)(Mi)(nj) L,Mn LMn,),
(45a)
3,7 _ —113,
Oty (ariy, vy = Dusie OGey (ariy, vy T Aawy ey (v i) MAN,ne,  (45b)
A3, —1 3,17
O(ll:;,?mi),(nj) = Aury, O(ll:;,(mi),(nj) = Ay (M) (N )M gn- - (45¢)

Substituting into derives the final expression for the adaptive
Lukovsky moment component

F6 (t) = _h_l Z mfi:n}; (pmifmi - pmiTmi)

mi

3,ppr N 3,r "
* Z ]\4(1'4117@'137(1\/11’),(lk-)kaplW7"71jJr Z M(lkfz()MiMNj)mkpMipNj

LkMing lkMiNj
3,rrr .. 3,ppr . .
+ Z M(lk)y(mi),(nj)rlkrmirnj+ Z N(Lk%(Mi),(nj)kaPMiTnj
lkminj LkMinj
3, . 3, ..
+ D NG iy gyt miTn + D NG (agiy gy B MiTng (46)
lkming lkMing
where

3,ppr . —1A3,ppr
M(LI;CI;,(Mi),(lk) = —(wh) O(kap),(Mi)-,(nj)’

3,7pp _ —1A3,rpp

Mgy iy, vy = —(Th) Oy iy (v
3,rrr _ —1A3,rrr

My (miy, gy = ~ (TR Oy iy ()
3, g o —1,A33,p;

Nk iy, ) = = @) OGS (i (miy»

3,rrr _ —1/A3,rrr N3,rrr
Ny miy.ng) = @) (OGS miy. () F Oty (ny, (mi))

3,7pp _ —1(A3,rpp ~3,ppr ~3,rpp
Ny iy ovi= — ) OGS iy, vt Olaoy vy, anrt Oty (v ar)-

5 Conclusions

The derivation scheme from |2| was generalised to derive adaptive weakly-
nonlinear expressions for the resulting hydrodynamic force and moments



Adaptive Lukovsky’s formulas for the resulting hydrodynamic... 207

caused by the pressure loads on the wetted surface of an upright cir-
cular container partly filled with a liquid. The expressions follow from
the so-called Lukovsky formulas, which give the force and moment writ-
ten down in terms of the hydrodynamic generalised coordinates. They
are consistent with asymptotic relations of the adaptive modal equations
in |2]. The forthcoming derivations should focus on simplifications of
the weakly-nonlinear expressions to handle the case of the Narimanov-
Moiseev-type modal theory |2}3].

A Tensors

To derive the adaptive modal equations, [2] introduced a set of tensors,
which imply an algebra in the angular and radial coordinates. The first,
A-type tensor reads as

Ay Ny j= /7r cos(MO)... cos(NO) - sin(if)...sin(j6) d, (47)

—T

whose computations are best done by using the recursive formulas

A =05 Ayj = Ay = Ayj = moyy;
A]\/[N’ =ToMN (]V[‘FN 7’é 0)7 A]VIN, =2m0m N (M =N-= O)?
AriNKig =5 (At N=K i + At N+ K]ig) 5

1
AnteNoiojrt = 5 (Mage k)it — Magjklint) -

The second, the radial components and functions Rpz;(r) yield the A-
tensors:

1
/\(Mz')_“(N;q):/ TRMi(T)...RNk(T)dﬁ (48)
0
1
Noatoy (NG ) = / PR ()R () - Rea(r)- R () dr, (49)

1
- 1
A(M#)...(NK) :/0 TjRMi(T)wRNk(T) dr. (50)

B Differentiation rules

The analysis suggests the hydrodynamic moments relative to axes of the
Cartesian coordinate system Ozyz (with the coordinate units &,y and
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%) but the natural sloshing modes and associate derivations deal with
the cylindrical coordinates Orfz (the coordinate units 7,0 and 2). This
implies the gradients

mez :‘iax'i‘@ay'i_%az? vrez :7%87""‘97'_1694‘28% (51)
the differentiation rule
Oy =cos00, —r 1sinb oy, 0y =sinf o, + r~!cos dy, (52)

which, in particular, deduce the expression

Vayslz = ((r,0)] = & [~ cos 0 9,¢ + r~ " sin 0 9y(]
+ Y [—sinf0.¢ —r tcosOIpC]+ 2[1] (53)

used to identify the outer normal unit on the free surface 3(¢).
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