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INTEGRAL THEOREMS FOR MONOGENIC FUNCTIONS
IN COMMUTATIVE ALGEBRAS

Let A} be an arbitrary n-dimensional commutative associative algebra over
the field of compler numbers with m idempotents. Let e; = 1,ea,...,ex with
2 < k < 2n be elements of A} which are linearly independent over the field of
real numbers. We consider monogenic (i. e. continuous and differentiable in the
sense of Gateaux) functions of the variable 25:1 xje;, where r1,x2,..., Ty
are real, and prove curvilinear analogues of the Cauchy integral theorem, the
Morera theorem and the Cauchy integral formula in k-dimensional (2 < k <
2n) real subspace of the algebra A}}. The present results are generalizations of
the corresponding results obtained in [1] for the case k = 3.

1. Introduction. The Cauchy integral theorem and Cauchy integral
formula for the holomorphic function of the complex variable are
fundamental results of the classical complex analysis. Analogues of these
results are also important tools in commutative algebras of dimension
more than 2.

In the E. R. Lorch’s paper [2], for functions differentiable in the
sense of Lorch in an arbitrary convex domain of commutative associative
Banach algebra, some properties similar to properties of holomorphic
functions of complex variable (in particular, the curvilinear integral
Cauchy theorem and the integral Cauchy formula, the Taylor expansion
and the Morera theorem) are established. E. K. Blum [3] withdrew the
convexity of domain in the mentioned results from [2].

Let us note that a priori the differentiability of a function in the
sense of Gateaux is a restriction weaker than the differentiability of
this function in the sense of Lorch. Therefore, we consider a monogenic
functions defined as a continuous and differentiable in the sense of
Gateaux. Also we assume that a monogenic function is given in a
domain of three-dimensional subspace of an arbitrary commutative
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associative algebra with unit over the field of complex numbers. In this
situation the results established in the papers [2, 3] is not applicable for
a mentioned monogenic function, because it deals with an integration
along a curve on which the function is not given, generally speaking.

In the papers [4-6] for monogenic function the curvilinear analogues
of the Cauchy integral theorem, the Cauchy integral formula and the
Morera theorem are obtained in special finite-dimensional commutative
associative algebras. The results of the papers [4, 5, 6] are generalized
in the paper [1] to an arbitrary commutative associative algebra. At the
same time, in [1] monogenic functions are given in a domain of a real
three-dimensional subspace of the algebra.

In this paper, assuming that monogenic functions are given in a
domain of a real k-dimensional subspace of the algebra, we generalize
results of the papers [1].

Let us note that some analogues of the curvilinear Cauchy’s integral
theorem and the Cauchy’s integral formula for other classes of functions
in special commutative algebras are established in the papers [7-10].

2. The algebra A]'. Let N be the set of natural numbers. We
fix numbers m,n € N such that m < n. Let A" be an arbitrary
commutative associative algebra with unit over the field of complex
number C. E. Cartan [11, p. 33] proved that in the algebra A there
exist a basis {I}7_, which satisfies the following multiplication rules:

0 if r#s,
1. V rsell,m]NN: I.I; =
I if r=s;
2. VY r,se€m+1,n]NN: I.I,= > 5 ks

k=max{r,s}+1
3. Vsem+1n NN Ju,el,mNN V rell,mNN:

0 if r #£ ug,
LI, = { # (1)

I, if r=u,.

Furthermore, the structure constants Y7, € C satisfy the associativity
conditions:

(Al). (I 1)L, =I.(I,I,) V rs,pe[m+1,nNN;

(A2). (IJI)I,=1,:I,) Vuell,m]NNV s,pe[m+1n]NN.
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Obviously, the first m basis vectors {I,}_; are idempotents and,
therefore, generate the semi-simple subalgebra. The vectors {I,}}_,, 4
generate a nilpotent subalgebra of the algebra A". The unit of A7 is the
element of form 1 = """ | I,,. Therefore, we can state that the algebra
A" is a semi-direct sum of the m-dimensional semi-simple subalgebra S

and (n — m)-dimensional nilpotent subalgebra N, i. e.
A =S5®sN. (2)

Let us note that nilpotent algebras are fully described for the
dimensions 1,2, 3 in the paper [12], and some four-dimensional nilpotent
algebras can be found in the papers [13], [14].

The algebra A} contains m maximal ideals

Iu ;:{ Z )\kaZ)\kE(C}, u:1,2,...,m,

k=1, k#u
the intersection of which is the radical
R :={ En: My : M € C.
k=m-+1
We define m linear functionals f,, : A]* — C by putting
fully) =1, fulw)=0 YweZ,, u=12,...,m.

Since the kernel of every functional f, are the corresponding maximal
ideal Z,,, these functionals are continuous and multiplicative (see [15,
p. 147]) also.

3. Monogenic functions in Ej. Consider vectors e; = 1,e9,..., ¢
in A7, where 2 < k < 2n. Let these vectors be linearly independent over
the field of real numbers R (see [6]). It means that the equality

k
Zajej =0, aj €R,
j=1

holds if and only if a; =0 for all j =1,2,...,k.
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Let the vectors e; = 1,e3,..., e, have the following decompositions
with respect to the basis {I,}7_;:

61:ZIT, ej:ZajTIr, ajTG(C, j:273,7k (3)
r=1

k
Let ( := > xjej, where z; € R. It is obvious that
j=1

k

&y ::fu(C):xl"_ijaju? u=1,2,...,m.

Jj=2

k
Let B, := {( = ) xje; : z; € R} be the linear span of vectors
j=1

e1 = 1,eq,..., e, over the field R.

Everywhere below, we make the following essential assumption:
fu(Eg) =C for all w=1,2,...,m. Obviously, it holds if and only if for
every fixed u = 1,2,...,m at least one of the numbers as,, asy, - .-, Gy
belongs to C\ R.

k
With a set Qg C R* we associate the set Q = {¢ = Y zje; :
j=1

(x1,...,2) € Qr} in Ej. Note that topological properties of a set @ in
FE). are understood as corresponding topological properties of the set Qr
in R*. For example, the homotopy of a curve v C E}, to the zero means
the homotopy of vg C R¥ to the zero; the rectifiability of a curve v C Ej,
is understood as the rectifiability of the curve yg C R*, etc.

Let  be a domain in E}, and

k
Qg = {(xl,xg,...,xk) ERk: C:ijej EQ}

J=1

We say that a continuous function ® : QO — A" is monogenic in € if
® is differentiable in the sense of Gateaux in every point of €, i. e. if for
every ¢ € Q there exists an element ®’(¢) € A™ such that

lim (B(C+2h) — B(Q)e T = hI(Q) Vhe By (4)
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' (() is the Gateaux derivative of the function ® at the point (.
Consider the decomposition of a function ® : 2 — A" with respect
to the basis {I,}I"_,

Q)=> Urlwy,z2,...,2x) L. (5)
r=1
In the case where the functions U, : Qr — C are R-differentiable in
Qg, i. e. for every (z1,22,...,2%) € Qg,
U, (21 + Axy, 29 + Az, ...,z + Axy) — Up (21,22, ..., TE) =

k k

ZA% .Y (Axy)P o0,

=1 j=1

k

Z

the function ® is monogenic in the domain 2 if and only if the following
Cauchy — Riemann conditions are satisfied in 2:

o 0P

92 _ 9% forall j=2.3,... k. 6

axj 8$1 K ora J ( )
An expansion of the resolvent is of the form (see [16]):

n s—m-+1
Qrs

(tey — )1 = Z 1+ > Z ey (7

ul s=m+1 r=2
VteC:t#£&, u=12...,m,

where the coefficients @), ; are determined by the following recurrence
relations:

~—

Q2,52T87 Qr,s: Z Qrfl,qu,sv T:3>47~-~7S_m+17
g=r+m-—2
(8)
with

s—1

k
T, :ijajs, By s = Z T,Y0 o, p=m+2,m+3,....n, (9)
j p=m-+1
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and the natural numbers u, are defined in the rule 3 of the multiplication
table of algebra A"

In the paper [17] an expansion of the resolvent is obtained for the
case k = 3.

Consider the sets M, :={¢ € Ej : fu(() =0} for u=1,2,...,m.

By D, C C we denote the image of {2 under the mapping f,, u =
1,2,...,m. We say that a domain ) C Ej is convex with respect to the
set of directions M, if Q2 contains the segment {(;+a(¢2—¢1) : @ € [0,1]}
for all (1,(s € Q such that (s — (1 € M,,.

In the next theorem we give a constructive description of all
monogenic functions given in domains of Ej and taking values in AT’
by means of holomorphic functions of the complex variable.

Theorem 1 [16]. Let a domain @ C E), be conver with respect to
the set of directions M, and f,(Ex) = C for allu = 1,2,...,m. Then
every monogenic function ® : Q@ — AT can be expressed in the form

() = ZIU i /Et(t)(tel — C)71 dt+

u=1

IR K NCI S (10)

where F, and G, are certain holomorphic functions in the domains
D, and D,_, respectively, and I'y is a closed Jordan rectifiable curve
in Dy which surrounds the point & and contains no points &, £,q =
1,2,...,m, 0 #q.

Note that in the paper [17] the expression of the form (10) is proved
for the case k = 3.

4. Cauchy integral theorem for a curvilinear integral. Let v
be a Jordan rectifiable curve in Ej. For a continuous function ¥ : v —
AT of the form

V()= Urlar,az,...ap) L +iY_ Vilwy,za,...,2x) L, (11)
r=1

r=1
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where (z1,22,...,2;) € yg and U, : yg = R, V. : 7g = R, we define an
integral along a Jordan rectifiable curve v by the equality:

k n
/\II(C)dC = ZejZIT/UT(xl,zQ,...,xk)dxj—i-
j=1 r=1

v TR

k
—l—iz e; ZI’“ / Vi(z1, 2o, .., zr)de;,
Jj=1 r=1

TR

where d( := eydxy + eadxs + . .. + epdxg.

Let us define a surface integral also. Let X be a piece-smooth
hypersurface in Ej. For a continuous function ¥ : ¥ — A" of the form
(11), where (z1,22,...,25) € Xg and U, : ¥g — R, V. : 3gp — R, we
define a surface integral on ¥ with the differential form dz, A dz4, by
the equality

3

/\I/(C)d:cp/\qu ::ZIT/Ur(xl,xg,...,xk)dmp/\dxq+

S r=1 Sr

n
+iZL~/Vr($1, Ta,...,T5)dey A dz,.
r=1
3r

If a function ® : © — A" is continuous together with partial
derivatives of the first order in a domain 2, and X is a piece-smooth
hypersurface in €2, and the edge v of surface X is a rectifiable Jordan
curve, then the following analogue of the Stokes formula is true:

ov ov
/‘IJ(C)dC = / <8$1 €2 — 37332 61) dry N dxo+
o b

< ov ov

€3 — 5 €2
6$2 (91‘3

ov ov
al'k “ 81171 Ck

Now, the next theorem is a result of the formula (12) and the
equalities (6).

+ ) dzoNdzs+. . .+( ) dzpNdzy. (12)
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Theorem 2. Suppose that ® : @ — AT is a monogenic function in
a domain ), and X is a piece-smooth surface in €2, and the edge v of
surface 3 is a rectifiable Jordan curve. Then

/ B(C)dC =0, (13)

~

In the case where a domain  is convex, the equality (13) can be
proved for an arbitrary closed Jordan rectifiable curve ¢ by the usual
way (see, e. g., [18]).

In the case where (2 is an arbitrary domain, similarly to the proof of
Theorem 3.2 [3], one can prove the following statement.

Theorem 3. Let @ : 2 — A be a monogenic function in a domain
Q. Then for every closed Jordan rectifiable curve v homotopic to a point
in §, the equality (13) is true.

5. The Morera theorem. To prove an analogue of Morera theorem
in the algebra AT, we introduce auxiliary notions and prove some

n

auxiliary statements.

Let us consider the algebra A7 (R) with the basis {Ij,iIx}}_, over
the field R which is isomorphic to the algebra A]" over the field C. In
the algebra A (R) there exist another basis {e,}2",, where the vectors

e1,ea,...,eL are the same as in the Section 3.
2n
For every element a := > a,e,, a, € R, we define the Euclidian
r=1
norm

2n
lafl := (| D a2.
r=1

k
Accordingly, [[C[| =/ 3 23 and |le;|| =1 for all j =1,2,...,k.
\/ j=1

Using the equivalence of norms in any finite-dimensional space, for
n

every element b := Y (b1, + ibay ), with by, b2 € R, we have the

r=1
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following inequalities:

2n

(83, +b3,) < cllbll, (14)

r=1

|b1r + ib2r| S

where ¢ is a positive constant independent of b.

Lemma 1. If v is a closed Jordan rectifiable curve in Ey and a
function W : v — A" is continuous, then

JRIGLE

Y

<o / 1w ()] ldc]) (15)

where ¢ 1s a positive absolute constant.

Proof. Using the representation of function ¥ in the form (11) for
(z1,22,...,2Tk) € v, we obtain

JRIGLS

ol

<> leale| [Un(orn, .z iV, )] dot
r=1
TR

ot E ||ek.IT||/|Ur(:z:1,x2,...,xk)+in(x1,:172,...,xk)|dxk.
r=1
TR

Now, taking into account the inequality (14) for b = ¥(¢{) and the
inequalities ||e;I,|| < ¢j, j =1,2,...,k, where ¢; are positive absolute
constants, we obtain the relation (15). The lemma is proved.

We understand a triangle A as a plane figure bounded by three line
segments connecting three its vertices. Denote by 0A the boundary of
triangle A in relative topology of its plane. We assume that the triangle
A includes the boundary 0A also.

Using Lemma 1, for functions taking values in the algebra A", the
following Morera theorem can be established in the usual way.

Theorem 4. If a function ® : Q@ — A" is continuous in a domain
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Q and satisfies the equality

[ et =o (16)

[7AN

for every triangle N C U, then the function ® is monogenic in the
domain €.

6. Cauchy integral formula for a curvilinear integral. Let

k
(o := Zl :z:§0) e; be a point in a domain Q@ C Ej. Let us take any 2-
j=
dimensional plane containing the point (p. In this plane let us take a

circle C((p, R) of radius R with the center at the point (y. Let R be such
that C((p, R) is completely contained in Q. By f,(C(¢o, R)) we denote
the image of C((p, R) under the mapping f,, u=1,2,...,m.

We assume that the circle C({y, R) embraces the set {( — (o : ¢ €

J M,}. It means that the curve f,(C({p, R)) bounds some domain D),
u=1
and f,(¢o) € D), for allu =1,2,...,m.

We say that the curve v C 2 embraces once the set {( — (o : ¢ €
U M,}, if there exists a circle C((p, R) which embraces the mentioned
u=1

set and is homotopic to 7 in the domain Q\{( —(p: ¢ € U My}.
1

u=

Let a circle C(0, R) embrace the set |J M,. Since the function ¢~*

u=1
is continuous on C(0, R), there exists the integral

/ ¢rd¢ =: X, (17)
C(0,R)

The next theorem is an analogue of Cauchy integral theorem for
monogenic functions ® : 2 — AT and is proved similarly to Theorem 4
in [1] .

Theorem 5. Suppose that a domain ) C E}, is convex with respect to
the set of directions M,, and f,(Ey) = C for allu=1,2,...,m. Suppose
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also that ® : Q@ — A" is a monogenic function in ). Then for every
point (o € € the following equality is true:

AD(G) = / B(O) (¢ — Co) L de, (18)

where 7y is an arbitrary closed Jordan rectifiable curve in ), that embraces
m

once the set {( —(o: ¢ € U My}.
u=1

7. A constant A. In certain special algebras (see [4-6]) the Cauchy
integral formula (18) has the form

B(60) = 5 [ O~ 6 . (19)
o A = 2. (20)

In this Section we indicate a set of algebras AT for which (20) holds.
First, let us consider some auxiliary statements.

As a consequence of the expansion (7), we obtain the following
equality:

n
Cil = ZAT I, (21)
r=1
with the coefficients A, determined by the following relations:
~ 1
Auziv u:1727 ) T,
&u
s—m-+1 é (22)
Zs = Z %, s=m+1,m+2,...,n,
r=2 Us
where @T,S are determined by the following recurrence relations:
QZ,SZ_T.97 Qr,s:_ Z Qr—l,qu737 r=34,...,s —-m+1,
q=r+m-—2

(23)
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where T, and By s are the same as in the equalities (9), and natural
numbers uy are defined in the rule 3 of the multiplication table of the
algebra A"

Taking into account the equality (21) and the relation

m

k k
dC = Z dl‘j ej = Z (dxl + Z dl‘j aju)lu—i-
j=1 Jj=2

u=1

+ Z Zd:cjajsf 7ngu1 + Z dT, I,

r=m+41 j=2 r=m-+1

we have the following equality:

C‘ldc=iﬁud§ulu+ i A,, dT, I+

u=1 r=m-+1

+ Z A de,, I, + Z Z AdTIIfZaTT. (24)

s=m+1 s=m+1r=m+1

Now, taking into account the denotation (24) and the equalities (22),
we calculate:

d&u ~ ,
Z%I Yo / gi:%mZIu:%m.
Co.R) =l pclor) v
Thus,

A=2mi+ > I, / o (25)

r=m+l  oq,R)
Therefore, the equality (20) holds if and only if

/ o, =0 Vr=m+1,...,n. (26)
C(0,R)

But, to satisfy the equality (26), the differential form o, must be the
total differential of some function. Note that the property to be the total
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differential is invariant under admissible transformations of coordinates
[19, p. 328, Theorem 2|. Thus, if to show that o, is the total differential
of a function which depends on the variables M, ey %, then it will
mean that o, is a total differential of a function of x1, zs, ..., xk.

7.1. In this subsection we indicate a set of algebras in which the
vectors (3) are arbitrarily chosen and the equality (20) holds. In the
next theorem we use the representation (2) of algebra A”.

Theorem 6. The equality (20) holds if at least one of the following
conditions are satisfied:

1) A= S;

2) N is a zero nilpotent subalgebra;

3) dim¢ N < 3, where dimc N is the complex dimensionality of
subalgebra N;

4) dim¢ N =4 and

Tﬁﬁ,wﬂ%ig,mﬁ = Tﬁi},mmTﬁﬁ,mH = T%i},m+3Tmi§,m+4 =
= Tﬁig,mﬂmiimw = Tﬁiimﬂﬁié,m% =
= Tm%,msTﬁiﬁ,mH = Tﬁii,wﬁ%ig,mﬂ =

= Tﬂii,m+2,r;nai%,m+3’rmi§,m+4 = Tﬂii,m+2’rmi;,m+3’rmig,m+4 =
= Tﬂiﬁ,mﬂﬁié,mﬂ = Tﬁi%,m+3rzig,m+4 =

= Tﬁig,mﬁTﬁii,mmeié,mM = Tzig,m—&-?)Tmii,m+2Tzi§,m+4 =

= Tzig,mHTzﬂ,mwTﬁig,mﬂ = U (27)

The proof of Theorem 6 is analogous to the proofs of Theorems 5 —
8 in [1].

Further, we consider some examples of algebras which satisfy the
relations (27).

Examples.

e The algebra with the basis {I; = 1,I5,1I5,14,I5} and the
multiplication rules

B=1I, L1, =1,
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and other products of nilpotent elements Is, I3, I, I5 are equal to
zero (for nilpotent subalgebra see [14], Table 21, algebra Js9 and
[13], page 590, algebra A 4).

The algebra with the basis {I; = 1,I,15,14,I5} and the
multiplication rule
I3 = 1Is,

and other products of nilpotent elements I, I3, Iy, Is are equal to
zero (for nilpotent subalgebra see [13], page 590, algebra A; o ®
A3 )

The algebra with the basis {I; = 1,I,13,14,I5} and the
multiplication rules
I3=13, I = I,

and other products of nilpotent elements Is, I3, I, I5 are equal to
zero (for nilpotent subalgebra see [13], page 590, algebra A, o &
ALQ).

The algebra with the basis {I; = 1,I,15,14,I5} and the
multiplication rules

B=1I, Iy 13 =14,

and other products of nilpotent elements I, I3, I4, Is are equal to
zero (for nilpotent subalgebra see [14], Table 21, algebra Jr71).

An example of algebra, which does not satisfy the relations (27), is

considered in the paper [1]. Moreover, in [1] the vectors ej, e, e3 of form
(3) are selected such that the equality (20) is not true.

7.2 In this subsection we indicate sufficient conditions on a choose

of the vectors (3) for which the equality (20) is true. We use the
representation (2) of algebra A,

Theorem 7. If C(0,R) C E), C S, then the equality (20) holds.
Proof. Note that the condition Ej C S means that a;. = 0 for all

j=2,3,....,kand r =m+1,...,n in the decomposition (3).
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If ( €S, then Ts =0 for s =m +1,...,n (see the denotation (9)).
Tt follows from the relation (24) that

dT,, ~
Omi1 = — 4 A dea, s
Um+1
o ) —_— (28)
gr:£T+Ard§ur+ Z AgdT, X5, r=m+2,...,n
Ur q,s=m—+1

Now, it follows from (23), (22) that A, = 0, and then o, = 0 for
r=m+1,...,n due to the equalities (28). Finally, the equality (20) is
a consequence of the equality o, = 0 and the relation (25). The theorem
is proved.

Theorem 7 generalizes Theorem 6 [20] and Theorem 9 [1].

Now, let us consider some results for the case where Ey ¢ S. First, if
dim¢ N < 3, then by Theorem 6 the equality (20) holds for C(0, R) C Ej,
and any FEj. Furthermore, using Theorem 6, we prove the next theorem
similarly to Theorem 10 in [1].

Theorem 8. Let dimg N = 4. Then the equality (20) holds if the
following two conditions are satisfied:

1) @jme1 =0 forall j =2,3,...,k;

2) for every j = 2,3,...,k at least one of the equalities ajpmt2 = 0
or ajm+3 = 0 holds.
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