Marek Golasiński, Francisco Gómez Ruiz

Spheres over finite rings and their polynomial maps

The paper [8] grew out of our attempt to describe all polynomial self-maps of the real and complex circle as well.

Introduction. The definition of the n-sphere \mathbb{S}^{n} with $n \geq 0$ over the reals can be extended to arbitrary commutative and unitary rings R which leads to the n-sphere

$$
\mathbb{S}^{n}(R)=\left\{\left(r_{0}, \ldots, r_{n}\right) \in R^{n+1} ; r_{0}^{2}+\cdots+r_{n}^{2}=1\right\}
$$

over R. If R is finite then it is worthwhile to compute its cardinality $\sharp\left(\mathbb{S}^{n}(R)\right)$. More generally, if $V\left(F_{q}\right)$ is an affine variety defined over a finite field F_{q}, we can not only consider the number $\sharp(V(F q))$, but also $\sharp\left(V\left(F_{q^{m}}\right)\right)$ for $m \geq 1$. These can be nicely encoded by the Hasse-Weil zeta function of $V: \zeta(V ; X)=\exp \left(\sum_{m=1}^{\infty} \frac{\sharp\left(V\left(F_{q^{m}}\right)\right)}{m} X^{m}\right) \in \mathbb{Q}[[X]]$ which satisfies a number of fundamental properties, known as the Weil conjectures, which are known to be true mainly by the work [6] of Deligne.

Like for \mathbb{S}^{1}, the circle $\mathbb{S}^{1}(R)$ is equipped in an abelian group structure. Further, $\mathbb{S}^{1}(-)$ is a functor from commutative and unitary rings into abelian group. In particular, for the field \mathbb{Q} of rational numbers, points of $\mathbb{S}^{1}(\mathbb{Q})$ are determined by Pythagorean triples and $\mathbb{S}^{1}(\mathbb{Q})$ is dense in the circle \mathbb{S}^{1}. If R is a finite ring then $\mathbb{S}^{1}(R)$ is a finite abelian group and it is a natural problem to determine its structure.

In [9], the author considers the group structure in $\mathbb{S}^{1}(R)$, with R being a commutative and unitary ring, determines this structure in the case when R is either a finite field or the ring \mathbb{Z}_{m} of integers modulo m, and describes the group structure on conic sections.

In particular, by [9], the group $\mathbb{S}^{1}(R)$ is cyclic provided R is a field or the ring $\mathbb{Z}_{p^{k}}$ of integers modulo p^{k} for a prime odd number p. Further, in
[9, p. 54] the author has stated: The case $p=2$ is particularly interesting (or nasty, depending on your point of view [oder lästig, je nachdem, wie man es sieht]).

The aim of Section 1 is to simplify proofs of some results from [9], present their generalizations and state in Theorem 2.5:
If p is a prime and $k \geq 1$ then

$$
\mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right) \cong \begin{cases}\mathbb{Z}_{p^{k-1}(p-1)}^{+}, & \text {if } p \equiv 1(\bmod 4) \\ \mathbb{Z}_{p^{k-1}(p+1)}^{+}, & \text {if } p \equiv 3(\bmod 4) \\ \mathbb{Z}_{2}^{+}, & \text {if } k=1 \\ \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2^{2}}^{+} \oplus \mathbb{Z}_{2^{k-2}}^{+}, & \text {if } k \geq 2\end{cases}
$$

The paper [8] grew out of our attempt to describe all polynomial selfmaps of the real and complex circle as well. Then, some results from [11, 14, 15] on spheres and their polynomial maps into spheres over any field has been transfered. In virtue of Wood [14] (see also [5, Chapter 13]) a necessary condition for the existence of a non-constant polynomial map $\mathbb{S}^{m} \rightarrow \mathbb{S}^{n}$ of spheres for $m \geq n$ is that $2^{k+1}>m \geq n \geq 2^{k}$ for some $k \geq 0$. It was shown in [15] that from the homotopy point of view nothing is lost by complexifying the problem of which homotopy classes of maps of spheres contain a polynomial representative. Furthermore in virtue of [7] any complex polynomial self-map of $\mathbb{S}^{2}(\mathbb{C})$ yields a regular self-map of the sphere \mathbb{S}^{2} in a canonical way. Then Loday [11] using algebraic and topological K-theory proved some results on polynomials maps into \mathbb{S}^{n}. For instance, every polynomial map from the torus \mathbb{T}^{n} to \mathbb{S}^{n} is null-homotopic if $n>1$. For n even those results were extended in $[3,4]$ to regular and then in [5] to polynomial maps $\mathbb{S}^{n_{1}} \times \cdots \times \mathbb{S}^{n_{k}} \rightarrow \mathbb{S}^{n}$ with $n=n_{1}+\cdots+n_{k}$ odd. Certainly, polynomial maps $\mathbb{S}^{m_{1}}(R) \times \cdots \times$ $\mathbb{S}^{m_{k}}(R) \rightarrow \mathbb{T}^{n}(R)$ are worth to be studied from the algebraic point of view for any field R. We made use of the abelian group structure on the sphere $\mathbb{S}^{1}(R)$ to show in [8, Corollary 2.11] that for any polynomial self-map $f: \mathbb{S}^{1}(R) \rightarrow \mathbb{S}^{1}(R)$ there are $\alpha \in \mathbb{S}^{1}(R)$ and an integer n such that $f(z)=\alpha z^{n}$ for any $z \in \mathbb{S}^{1}(R)$ provided the field R is infinite. All polynomial maps $\mathbb{S}^{m_{1}}(R) \times \cdots \times \mathbb{S}^{m_{k}}(R) \rightarrow \mathbb{T}^{n}(R)$ are listed in [8] for any infinite field R.

Section 2 takes up the systematic study of spheres $\mathbb{S}^{n}(R)$ over a finite field R and polynomial maps $\mathbb{S}^{m_{1}}(R) \times \cdots \times \mathbb{S}^{m_{k}}(R) \rightarrow \mathbb{S}^{n_{1}}(R) \times$ $\cdots \times \mathbb{S}^{n_{l}}(R)$ with $m_{1}, \ldots, m_{k}, n_{1}, \ldots, n_{l} \geq 0$. Theorem 3.2 shows the cardinality $\sharp\left(\mathbb{S}^{n}(R)\right)$ of the n-sphere $\mathbb{S}^{n}(R)$:

If the characteristic $\chi(R) \neq 2$ then for any number $n \geq 1$ it holds:

$$
\sharp \mathbb{S}^{n}(R)=\left\{\begin{array}{l}
(\sharp R)^{n}-(\sharp R)^{\frac{n}{2}} \eta\left((-1)^{\frac{n}{2}}\right), \text { if } n \text { is even; } \\
(\sharp R)^{n}-(\sharp R)^{\frac{n-1}{2}} \eta\left((-1)^{\frac{n+1}{2}}\right) \text { if } n \text { is odd, }
\end{array}\right.
$$

where

$$
\eta(1)=1 \text { and } \eta(-1)=\left\{\begin{array}{l}
1, \text { if the equation } X^{2}+1=0 \text { has a solution } \\
-1 \text { otherwise }
\end{array}\right.
$$

and Corollary 3.4 asserts that any such any map $\mathbb{S}^{m_{1}}(R) \times \cdots \times \mathbb{S}^{m_{k}}(R) \rightarrow$ $\mathbb{S}^{n_{1}}(R) \times \cdots \times \mathbb{S}^{n_{l}}(R)$ is a polynomial one.

1. Circles over a finite ring. Let R be a commutative and unitary ring. The set

$$
\mathbb{S}^{1}(R)=\left\{\left(r_{0}, r_{1}\right) \in R \times R ; r_{0}^{2}+r_{1}^{2}=1\right\}
$$

is called the 1-sphere or the circle over R.
Observe that on $\mathbb{S}^{1}(R)$ there is an abelian group structure defined by $\left(r_{0}, r_{1}\right) \circ\left(r_{0}^{\prime}, r_{1}^{\prime}\right)=\left(r_{0} r_{0}^{\prime}-r_{1} r_{1}^{\prime}, r_{0} r_{1}^{\prime}+r_{1} r_{0}^{\prime}\right)$ for any points $\left(r_{0}, r_{1}\right),\left(r_{0}^{\prime}, r_{1}^{\prime}\right) \in \mathbb{S}^{1}(R)$. Writing $S O(2, R)$ for the group of special orthogonal 2×2-matrices over R, we may easily show

Remark 2.1. (1) For any commutative and unitary ring R there is an isomorphism of groups

$$
\mathbb{S}^{1}(R) \cong S O(2, R)
$$

determined by the assignment $\left(r_{0}, r_{1}\right) \mapsto\left(\begin{array}{cc}r_{0} & r_{1} \\ -r_{1} & r_{0}\end{array}\right)$ for $\left(r_{0}, r_{1}\right) \in \mathbb{S}^{1}(R)$.
(2) If R_{1}, R_{2} are commutative and unitary rings then there is an isomorphism of groups $\mathbb{S}^{1}\left(R_{1} \times R_{2}\right) \cong \mathbb{S}^{1}\left(R_{1}\right) \times \mathbb{S}^{1}\left(R_{2}\right)$.

Next, consider the quotient ring $R[i]=R[X] /\left(X^{2}+1\right)$, where i denotes the class of X in $R[X] /\left(X^{2}+1\right)$ and write $U(R)$ for the multiplicative group of R. Let $\chi(R)$ denote the characteristic of R. Then, we may state:

Proposition 2.2. For any unitary ring R there is a group monomorphism $\mathbb{S}^{1}(R) \rightarrow U(R[i])$. Further:
(1) if $\chi(R)=2$ then $\mathbb{S}^{1}(R)=\left\{(1+r+s, r) ; r, s \in R\right.$ with $\left.s^{2}=0\right\}$ and there is a splitting short exact sequence

$$
0 \rightarrow R^{+} \rightarrow \mathbb{S}^{1}(R) \rightarrow \tilde{R} \rightarrow 1
$$

where R^{+}is the additive group of R and the group $\tilde{R}=\left\{s \in R ; s^{2}=0\right\}$ with $s_{1} \circ s_{2}=s_{1}+s_{2}+s_{1} s_{2}$ for $s_{1}, s_{2} \in \tilde{R}$;
(2) if $i \in R$ with $i^{2}=-1$ then there is an exact sequence of abelian groups

$$
0 \rightarrow R_{0} \rightarrow \mathbb{S}^{1}(R) \rightarrow U(R)
$$

where $R_{0}=\{r \in R ; 2 r=0\}$;
(i) if $2 \in U(R)$ then there a group isomorphism

$$
\mathbb{S}^{1}(R) \xlongequal{\cong} U(R)
$$

(ii) if $\chi(R)=2$ then there is a splitting short exact sequence

$$
0 \rightarrow R \rightarrow \mathbb{S}^{1}(R) \rightarrow R_{1} \rightarrow 1
$$

where $R_{1}=\left\{r \in R ; r^{2}=1\right\}$;
(3) if $i \notin R$ then there is an exact sequence

$$
1 \rightarrow \mathbb{S}^{1}(R) \rightarrow U(R[i]) \xrightarrow{\rho} U(R)
$$

of abelian groups, where $\rho\left(r_{0}+r_{1} i\right)=r_{0}^{2}+r_{1}^{2}$ for $r_{0}+r_{1} i \in U(R[i])$. Further, if R is a finite field then $U(R[i]) \xrightarrow{\rho} U(R)$ is onto.

Proof. Certainly, the map $\varphi: \mathbb{S}^{1}(R) \rightarrow U(R[i])$ given by $\varphi\left(r_{0}, r_{1}\right)=$ $r_{0}+r_{1} i$ for $\left(r_{0}, r_{1}\right) \in \mathbb{S}^{1}(R)$ is a group monomorphism.
(1) Let $\chi(R)=2$. If $r, s \in R$ with $s^{2}=0$ then $(1+r+s, r) \in \mathbb{S}^{1}(R)$. Conversely, if $\left(r_{0}, r_{1}\right) \in \mathbb{S}^{1}(R)$ then $r_{0}=1+r_{1}+\left(1+r_{0}+r_{1}\right)$ and $\left(1+r_{0}+r_{1}\right)^{2}=0$. Hence, $\mathbb{S}^{1}(R)=\left\{(1+r+s, r) ; r, s \in R\right.$ with $\left.s^{2}=0\right\}$. Further, one can easily see that the map $\phi: R^{+} \rightarrow \mathbb{S}^{1}(R)$ given by $\phi(r)=$ $(1+r, r)$ for $r \in R$ is a group monomorphism. Write $\tilde{R}=\left\{s \in R ; s^{2}=0\right\}$ and $s_{1} \circ s_{2}=s_{1}+s_{2}+s_{1} s_{2}$ for $s_{1}, s_{2} \in \tilde{R}$. Then, (\tilde{R}, \circ) is an abelian group and the $\operatorname{map} \rho: \mathbb{S}^{1}(R) \rightarrow \tilde{R}$ given by $\rho(1+r+s, r)=s$ for $(1+r+s, r) \in \mathbb{S}^{1}(R)$ is an epimorphism. The sequence

$$
0 \rightarrow R^{+} \xrightarrow{\phi} \mathbb{S}^{1}(R) \xrightarrow{\rho} \tilde{R} \rightarrow 0
$$

is exact and the map $\rho^{\prime}: \tilde{R} \rightarrow \mathbb{S}^{1}(R)$ given by $\rho^{\prime}(s)=(1+s, 0)$ for $s \in \tilde{R}$ determines its splitting.
(2) Write $R_{0}=\{r \in R ; 2 r=0\}$. Then, the maps

$$
\alpha: R_{0} \rightarrow \mathbb{S}^{1}(R) \text { and } \varphi: \mathbb{S}^{1}(R) \rightarrow U(R)
$$

given by $\alpha(r)=(1+r, r)$ for $r \in R_{0}$ and $\varphi\left(r_{0}, r_{1}\right)=r_{0}+r_{1} i$ for $\left(r_{0}, r_{1}\right) \in$ $\mathbb{S}^{1}(R)$ are group homomorphisms with $\operatorname{Ker} \alpha=\{0\}$ and $\operatorname{Im} \alpha=\operatorname{Ker} \varphi$. Notice that $r \in U(R)$ with $r+r^{-1}=2 s$ for some $s \in R$ implies $(s,-(r-$ $s) i) \in \mathbb{S}^{1}(R)$ and $\varphi(s,-(r-s) i)=r$. Consequently,

$$
\operatorname{Im} \varphi=\left\{r \in U(R) ; r+r^{-1} \in 2 R\right\}
$$

(i) If $2 \in U(R)$ then $R_{0}=\{0\}$ and $r+r^{-1} \in \operatorname{Im} \varphi$ for $r \in U(R)$. Hence, the map

$$
\psi: U(R) \rightarrow \mathbb{S}^{1}(R)
$$

given by $\psi(r)=\left(2^{-1}\left(r^{-1}+r\right), 2^{-1}\left(r^{-1}-r\right) i\right)$ for $r \in U(R)$ is the inverse of the $\varphi: \mathbb{S}^{1}(R) \rightarrow U(R)$ above.
(ii) If $\chi(R)=2$ then $R_{0}=R, \operatorname{Im} \varphi=\left\{r \in R ; r^{2}=1\right\}=R_{1}$ and the short exact sequence

$$
0 \rightarrow R^{+} \rightarrow \mathbb{S}^{1}(R) \rightarrow R_{1} \rightarrow 1
$$

splits as an exact sequence of elementary 2 -groups.
(3) Consider the group homomorphism $\rho: U(R[i]) \rightarrow U(R)$ given by $\rho\left(r_{0}+r_{1} i\right)=r_{0}^{2}+r_{1}^{2}$ for $r_{0}+r_{1} i \in U(R[i])$. Then, $\operatorname{Ker} \rho=\mathbb{S}^{1}(R)$ and consequently we get the required short exact sequence $1 \rightarrow \mathbb{S}^{1}(R) \rightarrow$ $U(R[i]) \rightarrow U(R)$.

Let now R be a finite field and define the group endomorphism π : $U(R) \rightarrow U(R)$ given by $\pi(r)=r^{2}$ for $r \in U(R)$. If $\chi(R)=2$ then π is an automorphism and so $U(R[i]) \xrightarrow{\rho} U(R)$ is onto.

Now, suppose that $\chi(R) \neq 2$ and write $\sharp X$ for the cardinality of a finite set X. Notice that the group endomorphism $U(R) \rightarrow U(R)$ given by $r \mapsto r^{2}$ for $r \in U(R)$ leads to ker $\pi \cong \mathbb{Z}_{2}$ and $\sharp\left\{r^{2} ; r \in U(R)\right\}=$ $\frac{\sharp U(R)}{2}$. Given $r \in U(R)$, we follow [10, Remark 6.25] to consider the sets $A=\left\{r_{0}^{2} ; r_{0} \in U(R) \cup\{0\}\right\}$ and $B=\left\{r-r_{1}^{2} ; r_{1} \in U(R) \cup\{0\}\right\}$. Then, $\sharp A=\sharp B=\frac{\sharp U(R)}{2}+1$ and consequently $A \cap B \neq \emptyset$ which implies that $\rho\left(r_{0}+r_{1} i\right)=r$.

Writing \mathbb{Z}_{m}^{+}for the cyclic group with order m, we deduce (see $[9$, Korollar 6]):

Corollary 2.3. If R is a finite field then there is an isomorphism of groups:
(1) $\mathbb{S}^{1}(R) \simeq\left(\mathbb{Z}_{2}^{+}\right)^{k}$ provided $\sharp R=2^{k}$ and $\chi(R)=2$;
(2) $\mathbb{S}^{1}(R) \simeq\left\{\begin{array}{ll}\mathbb{Z}_{\sharp R-1}^{+}, & \text {if } \sharp R \equiv 1(\bmod 4) ; \\ \mathbb{Z}_{\sharp R+1}^{+}, & \text {if } \sharp R \equiv 3(\bmod 4) .\end{array} \quad\right.$ provided $\chi(R) \neq 2$.

Proof. (1) follows directly from Proposition 2.2(2)(ii).
(2) If $\sharp R \equiv 1(\bmod 4)$ then $i \in R$ and by Proposition $2.2(2)$, we get an isomorphism $\mathbb{S}^{1}(R) \cong U(R)$. Hence, the well-known isomorphism $U(R) \cong \mathbb{Z}_{\sharp R-1}^{+}$yields $\mathbb{S}^{1}(R) \cong \mathbb{Z}_{\sharp R-1}^{+}$.

If $\sharp R \equiv 3(\bmod 4)$ then, by Fermat Theorem on Sums of Two Squares, $i \notin R$. Then, by Proposition $2.2(3)$, there is an exact sequence $1 \rightarrow$ $\mathbb{S}^{1}(R) \rightarrow U(R[i]) \rightarrow U(R) \rightarrow 1$ of abelian groups. Because R and $R[i]$ are finite fields, there are isomorphisms $U(R) \cong \mathbb{Z}_{\sharp R-1}$ and $U(R[i]) \cong$ $\mathbb{Z}_{(\sharp R)^{2}-1}$. Consequently, we deduce $\mathbb{S}^{1}(R) \cong \mathbb{Z}_{\sharp R+1}^{+}$and the proof is complete.

Let now $R=\mathbb{Z}_{m}$, the ring of integers modulo m. The primary factorization $m=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$ yields an isomorphism of rings $\mathbb{Z}_{m} \xlongequal{\cong}$ $\mathbb{Z}_{p_{1}^{k_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{k_{t}}}$. Because $\mathbb{S}^{1}(-)$ is a product preserving functor from unitary rings to abelian groups, we get an isomorphism

$$
\mathbb{S}^{1}\left(\mathbb{Z}_{m}\right) \stackrel{\cong}{\rightrightarrows} \mathbb{S}^{1}\left(\mathbb{Z}_{p_{1}^{k_{1}}}\right) \times \cdots \times \mathbb{S}^{1}\left(\mathbb{Z}_{p_{t}^{k_{t}}}\right)
$$

and $\sharp \mathbb{S}^{1}\left(\mathbb{Z}_{m}\right)=\sharp \mathbb{S}^{1}\left(\mathbb{Z}_{p_{1}^{k_{1}}}\right) \cdots \sharp \mathbb{S}^{1}\left(\mathbb{Z}_{p_{t}^{k_{t}}}\right)$. Hence, the problem of determining the structure of $\mathbb{S}^{1}\left(\mathbb{Z}_{m}\right)$ and $\sharp \mathbb{S}^{1}\left(\mathbb{Z}_{n}\right)$ has been reduced to the case of prime powers p^{k}. By the claim in [9, p. 54], the group $\mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right)$ is cyclic provided p is an odd prime. A proof of that is presented below.

Lemma 2.4. If p is a prime and $k \geq 1$ then

$$
U\left(\mathbb{Z}_{p^{k}}[i]\right) \cong \begin{cases}\mathbb{Z}_{p^{k-1}(p-1)}^{+} \oplus \mathbb{Z}_{p^{k-1}(p-1)}^{+}, & \text {if } p \equiv 1(\bmod 4) \\ \mathbb{Z}_{p^{k-1}}^{+} \oplus \mathbb{Z}_{p^{k-1}\left(p^{2}-1\right)}^{+}, & \text {if } p \equiv 3(\bmod 4) \\ \mathbb{Z}_{2}^{+}, & \text {if } p=2 \operatorname{and} k=1 \\ \mathbb{Z}_{2^{2}}^{+} \oplus \mathbb{Z}_{2^{k-2}}^{+} \oplus \mathbb{Z}_{2^{k-1}}^{+}, & \text {if } p=2 \operatorname{and} k \geq 2\end{cases}
$$

Proof. First, let p be an odd prime. Recall the well-known the isomorphism $U\left(\mathbb{Z}_{p^{k}}\right) \cong((p)+1) \oplus U\left(\mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p^{k-1}(p-1)}^{+}$stated in [13,

Theorem 6.7], where (p) is the nilpotent principal ideal of $\mathbb{Z}_{p^{k}}$ generated by p.

Let $p \equiv 1(\bmod 4)$ and $i \in U\left(\mathbb{Z}_{p^{k}}\right)$ with order four. Because $i \in \mathbb{Z}_{p-1}$ and -1 is the only element in \mathbb{Z}_{p-1} with order two, we deduce that $i^{2}=-1$. Consequently, $\mathbb{Z}_{p^{k}}[i] \cong \mathbb{Z}_{p^{k}} \times \mathbb{Z}_{p^{k}}$ and $U\left(\mathbb{Z}_{p^{k}}[i]\right) \cong U\left(\mathbb{Z}_{p^{k}}\right) \times$ $U\left(\mathbb{Z}_{p^{k}}\right) \cong \mathbb{Z}_{p^{k}(p-1)}^{+} \oplus \mathbb{Z}_{p^{k}(p-1)}^{+}$.

If $p \equiv 3(\bmod 4)$ then, by Fermat's Theorem on Sums of Two Squares, $i \notin \mathbb{Z}_{p^{k}}$. Given $r_{0}+r_{1} i \in \mathbb{Z}_{p^{k}}[i]$, we see that $r_{0}+r_{1} i \in U\left(\mathbb{Z}_{p^{k}}[i]\right)$ if and only if $r_{0}^{2}+r_{1}^{2} \in U\left(\mathbb{Z}_{p^{k}}\right)$ or equivalently, if and only if $r_{0} \in U\left(\mathbb{Z}_{p^{k}}\right)$ or $r_{1} \in$ $U\left(\mathbb{Z}_{p^{k}}\right)$. Hence, $\mathbb{Z}_{p^{k}}[i]$ is a p-primary ring with the nilpotent principal prime ideal (p) and $\sharp(p)=p^{2(k-1)}$. Then, the residue filed $\mathbb{Z}_{p^{k}}[i] /(p) \cong$ $\mathbb{Z}_{p^{2}}$ and in view of $\left[2\right.$, Proposition 1], we deduce that $U\left(\mathbb{Z}_{p^{k}}[i]\right) \cong((p)+$ 1) $\oplus U\left(\mathbb{Z}_{p^{2}}\right)$. Following the proof of [13, Theorem 6.7], we get $(1+$ $p)^{p^{l-2}},(1+p i)^{p^{l-2}} \not \equiv 1\left(\bmod p^{l}\right)$ and $(1+p)^{p^{l-1}},(1+p i)^{p^{l-1}} \equiv 1\left(\bmod p^{l}\right)$ for $l \geq 2$. Because $\langle 1+p\rangle \cap\langle 1+p i\rangle=\{1\}$, we deduce a group isomorphism $((p)+1) \cong\langle 1+p\rangle \oplus\langle 1+p i\rangle \cong \mathbb{Z}_{p^{k-1}}^{+} \oplus \mathbb{Z}_{p^{k-1}}^{+}$. Consequently, we get that $U\left(\mathbb{Z}_{p^{k}}[i]\right) \cong \mathbb{Z}_{p^{k-1}}^{+} \oplus \mathbb{Z}_{p^{k-1}\left(p^{2}-1\right)}^{+}$.

Let now $p=2$. First, it is obvious that $U\left(\mathbb{Z}_{2}[i]\right)=\{1, i\} \cong \mathbb{Z}_{2}$. Hence, we can assume that $k \geq 2$. Recall form [13, Theorem 5.44] that $U\left(\mathbb{Z}_{2^{k}}\right) \cong\langle 5\rangle \oplus\langle-1\rangle \cong \mathbb{Z}_{2^{k-2}}^{+} \oplus \mathbb{Z}_{2}^{+}$for $k \geq 2$. Because $r_{0}+r_{1} i \in$ $U\left(\mathbb{Z}_{2^{k}}[i]\right)$ if any only if r_{0} is odd and r_{1} is even or vise versa, we get $\sharp U\left(\mathbb{Z}_{2^{k}}[i]\right)=2^{2 k-1}$. Further, $(1+2 i)^{2^{l-2}} \equiv 2^{l-1}+1+2^{l-1} i\left(\bmod 2^{l}\right)$ for $l>2$. This implies that 2^{k-1} is the order of $1+2 i$. Next, the intersection of any two of the subgroups $\langle i\rangle,\langle 5\rangle$ and $\langle 1+2 i\rangle$ is the trivial group and $\sharp U\left(\mathbb{Z}_{2^{k}}[i]\right)=2^{2 k-1}$. Thus, we deduce that $U\left(\mathbb{Z}_{2^{k}}[i]\right) \cong$ $\langle i\rangle \oplus\langle 5\rangle \oplus\langle 1+2 i\rangle \cong \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{k-2}} \oplus \mathbb{Z}_{2^{k-1}}$ for $k \geq 2$ and the proof is complete.

Now, we are in a position to show the main result of this Section:
Theorem 2.5. If p is a prime and $k \geq 1$ then

$$
\mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right) \cong \begin{cases}\mathbb{Z}_{p^{k-1}(p-1)}^{+}, & \text {if } p \equiv 1(\bmod 4) \\ \mathbb{Z}_{p^{k-1}(p+1)}^{+}, & \text {if } p \equiv 3(\bmod 4) \\ \mathbb{Z}_{2}^{+}, & \text {if } k=1 \\ \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2^{2}}^{+} \oplus \mathbb{Z}_{2^{k-2}}^{+}, & \text {if } k \geq 2\end{cases}
$$

Proof. (1) If $p \equiv 1(\bmod 4)$ then $i \in \mathbb{Z}_{p^{k}}$. Because $2 \in U\left(\mathbb{Z}_{p^{k}}\right)$, by Proposition 2.2(2), the map $\rho: \mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right) \rightarrow U\left(\mathbb{Z}_{p^{k}}\right)$ given by $\rho\left(r_{0}, r_{1}\right)=$ $r_{0}+r_{1} i$ for $\left(r_{0}, r_{1}\right) \in \mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right)$ is an isomorphism of groups. Thus,

$$
\mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right) \cong U\left(\mathbb{Z}_{p^{k}}\right) \cong \mathbb{Z}_{p^{k-1}(p-1)}^{+}
$$

(2) If $p \equiv 3(\bmod 4)$ then $i \notin \mathbb{Z}_{p^{k}}$. Further, $U\left(\mathbb{Z}_{p^{k}}\right) \cong \mathbb{Z}_{p^{k-1}(p-1)}^{+}$ and, in view of Lemma 2.4, it holds $U\left(\mathbb{Z}_{p^{k}}[i]\right) \cong \mathbb{Z}_{p^{k-1}}^{+} \oplus \mathbb{Z}_{p^{k-1}\left(p^{2}-1\right)}^{+}$. Next, consider the map $\rho: U\left(\mathbb{Z}_{p^{k}}[i]\right) \rightarrow U\left(\mathbb{Z}_{p^{k}}\right)$ defined in Proposition 2.2(2). Then, the restriction $\left.\rho\right|_{\mathbb{Z}_{p^{k}-1}^{+}}$is an isomorphism and, in view of Proposition $2.2(3)$, the restriction $\left.\rho\right|_{\mathbb{Z}_{p^{2}-1}^{+}}$is onto. Consequently, $\rho: U\left(\mathbb{Z}_{p^{k}}[i]\right) \rightarrow U\left(\mathbb{Z}_{p^{k}}\right)$ is onto and the short exact sequence $1 \rightarrow \mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right) \rightarrow U\left(\mathbb{Z}_{p^{k}}[i]\right) \xrightarrow{\rho} U\left(\mathbb{Z}_{p^{k}}\right) \rightarrow 1$ from Proposition $2.2(3)$ yields $\mathbb{S}^{1}\left(\mathbb{Z}_{p^{k}}\right) \cong \mathbb{Z}_{p^{k-1}(p+1)}^{+}$.
(3) For the group homomorphism $\rho: U\left(\mathbb{Z}_{2^{k}}[i]\right) \rightarrow U\left(\mathbb{Z}_{2^{k}}\right)$ given by $\rho\left(r_{0}+r_{1} i\right)=r_{0}^{2}+r_{1}^{2}$ for $r_{0}+r_{1} i \in U\left(\mathbb{Z}_{2^{k}}[i]\right)$, by Proposition 2.2(3), we get the short exact sequence

$$
1 \rightarrow \mathbb{S}^{1}\left(\mathbb{Z}_{2^{k}}\right) \rightarrow U\left(\mathbb{Z}_{2^{k}}[i]\right) \xrightarrow{\rho} U\left(\mathbb{Z}_{2^{k}}\right)
$$

of abelian groups with $k \geq 1$.
Because $U\left(\mathbb{Z}_{2}\right)=\{1\}$, Lemma 2.4 yields that $\mathbb{S}^{1}\left(\mathbb{Z}_{2}\right) \cong U\left(\mathbb{Z}_{2}[i]\right) \cong$ \mathbb{Z}_{2}^{+}. If $k \geq 2$ then by the proof of Lemma 2.4, we have that $U\left(\mathbb{Z}_{2^{k}}[i]\right) \cong$ $\langle i\rangle \oplus\langle 5\rangle \oplus\langle 1+2 i\rangle \cong \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{2^{k-2}} \oplus \mathbb{Z}_{2^{k-1}}$. Because $\rho(i)=1, \rho(5)=5^{2}$, $\rho(1+2 i)=5$ and $U\left(\mathbb{Z}_{2^{k}}\right) \cong\langle 5\rangle \oplus\langle-1\rangle \cong \mathbb{Z}_{2^{k-2}}^{+} \oplus \mathbb{Z}_{2}^{+}$, we deduce that $\operatorname{Im} \rho=\langle 5\rangle \cong \mathbb{Z}_{2^{k-2}}^{+}$. Consequently, the exact sequence

$$
1 \rightarrow \mathbb{S}^{1}\left(\mathbb{Z}_{2^{k}}\right) \rightarrow U\left(\mathbb{Z}_{2^{k}}[i]\right) \xrightarrow{\rho} \mathbb{Z}_{2^{k-2}} \rightarrow 1
$$

yields $\mathbb{S}^{1}\left(\mathbb{Z}_{2^{k}}\right) \cong \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2^{2}}^{+} \oplus \mathbb{Z}_{2^{k-2}}^{+}$for $k \geq 2$ and the proof is complete.

2. Spheres over finite fields and their polynomial

maps. Let R be a commutative and unitary ring. Then, we notice:

Remark 3.1. For any commutative and unitary ring R there is a bijection $\mathbb{S}^{3}(R) \cong S U(R[i])$ determined by the assignment

$$
\left(r_{0}, r_{1}, r_{2}, r_{3}\right) \mapsto\left(\begin{array}{cc}
r_{0}+r_{1} i & r_{2}+r_{3} i \\
-r_{2}+r_{3} i & r_{0}-r_{1} i
\end{array}\right)
$$

for $\left(r_{0}, r_{1}, r_{2}, r_{3}\right) \in \mathbb{S}^{3}(R)$. Consequently, $\mathbb{S}^{3}(R)$ inherits the group structure from $S U(R[i])$. Notice that $\mathbb{S}^{2}(R) \cong\{A \in S U(R[i]) ; \operatorname{tr}(A)=0\}$ provided $2 R=0$, where $\operatorname{tr}: S U(R[i]) \rightarrow R[i]$ is the trace function.

Notice that there is an embedding $R_{0}^{n} \hookrightarrow \mathbb{S}^{n}(R)$ given by

$$
\left(r_{0}, \ldots, r_{n-1}\right) \mapsto\left(1+r_{0}+\cdots+r_{n-1}, r_{0}, \ldots, r_{n-1}\right)
$$

for $\left(r_{0}, \ldots, r_{n-1}\right) \in R_{0}^{n}$, where $R_{0}=\{r \in R ; 2 r=0\}$. In particular, $R^{n} \hookrightarrow \mathbb{S}^{n}(R)$ provided $\chi(R)=2$. If R is a field with $\chi(R)=2$ then certainly there is a bijection $\mathbb{S}^{n}(R) \cong R^{n}$ and $\sharp \mathbb{S}^{n}(R)=(\sharp R)^{n}$.

Now, suppose that R is a finite field with $\chi(R) \neq 2$. Basing on [10, Theorems 6.26 and 6.27], we obtain:

Theorem 3.2. If R is a finite field with $\chi(R) \neq 2$ then for any number $n \geq 1$ it holds:

$$
\sharp \mathbb{S}^{n}(R)=\left\{\begin{array}{l}
(\sharp R)^{n}+(\sharp R)^{\frac{n}{2}} \eta\left((-1)^{\frac{n}{2}}\right), \text { if } n \text { is even } ; \\
(\sharp R)^{n}-(\sharp R)^{\frac{n-1}{2}} \eta\left((-1)^{\frac{n+1}{2}}\right), \text { if } n \text { is odd, }
\end{array}\right.
$$

where $\eta(1)=1$ and $\eta(-1)= \begin{cases}1, & \text { if the equation } x^{2}+1=0 \\ -1, & \text { has a solution in } R ; \\ \text { otherwise. }\end{cases}$
Let $\sharp R=p^{k}$ for an odd prime p. Notice that $\eta(-1)=1$ if and only if $p \equiv 1(\bmod 4)$ or k is an even number.

To examine polynomial maps $P=\left(P_{0}, \ldots, P_{n}\right): \mathbb{S}^{m}(R) \rightarrow \mathbb{S}^{n}(R)$ in that case a general result would be useful.

Proposition 3.3. Let R be a field and $S \subseteq R^{m+1}, T \subseteq R^{n+1}$ finite subsets. Then any map $f: S \rightarrow T$ is a polynomial one for $m, n \geq 0$.

Proof. Given a finite subset $S \subseteq R^{m+1}$ there is obviously a finite subset $S_{0}=\left\{r_{1}, \ldots, r_{k}\right\} \subseteq R$ with $S \subseteq S_{0}^{m+1}$. It is well-know that there are interpolation polynomials $P_{r_{1}}(X), \ldots, P_{r_{k}}(X) \in R[X]$ with $P_{r_{i}}\left(x_{j}\right)=$
$\delta_{r_{i} r_{j}}$ for $i, j=0, \ldots, k$. Next for any $s=\left(r_{i_{0}}, \ldots, r_{i_{m}}\right) \in S_{0}^{m+1}$ consider the polynomial

$$
P_{s}\left(X_{0}, \ldots, X_{m}\right)=P_{r_{i_{0}}}\left(X_{0}\right) \cdots P_{r_{i_{m}}}\left(X_{m}\right) \in R\left[X_{0}, \ldots, X_{m}\right]
$$

Then $P_{s}\left(s^{\prime}\right)=\delta_{s s^{\prime}}$ for any $s, s^{\prime} \in S_{0}^{m+1}$.
Now, given a map $f: S \rightarrow T$ write $f(s)=\left(f_{0}(s), \ldots, f_{n}(s)\right)$ for any point $s \in S$. Then, the polynomial map $S \rightarrow T$ determined by polynomials:

$$
\left.\begin{array}{rl}
Q_{0}\left(X_{0}, \ldots, X_{m}\right) & =\sum_{s \in S} f_{0}(s) P_{s}\left(X_{0}, \ldots, X_{m}\right), \\
\ldots \ldots
\end{array}\right)
$$

coincides with $f: S \rightarrow T$ and the proof is complete.
In particular, the following conclusion follows.
Corollary 3.4. Let R be a finite field. Then any map $\mathbb{S}^{m_{1}}(R) \times$ $\cdots \times \mathbb{S}^{m_{k}}(R) \rightarrow \mathbb{S}^{n_{1}}(R) \times \cdots \times \mathbb{S}^{n_{l}}(R)$ is a polynomial one for $m_{1}, \ldots, m_{k}, n_{1}, \ldots, n_{l} \geq 0$.

Let $\operatorname{End}_{R}\left(R\left[X_{1}, \ldots, X_{n}\right]\right)$ be the set of all R-homomorphisms of $R\left[X_{1}, \ldots, X_{n}\right]$ and $\operatorname{Aut}_{R}\left(R\left[X_{1}, \ldots, X_{n}\right]\right)$ the group of all its R automorphisms. Write $T(R, n)$ for the tame polynomial automorphism subgroup of $\operatorname{Aut}_{R}\left(R\left[X_{1}, \ldots, X_{n}\right]\right)$ generated by $\left(X_{1}+\right.$ $\left.F\left(X_{2}, \ldots, X_{n}\right), X_{2}, \ldots, X_{n}\right)$ for all $F\left(X_{2}, \ldots, X_{n}\right) \in R\left[X_{2}, \ldots, X_{n}\right]$, $\mathcal{P}\left(R^{n}\right)$ for the set of all self-maps of R^{n} and $\mathcal{B}\left(R^{n}\right)$ the group of all bijections of R^{n}. Then, we get an obvious map

$$
\mathcal{E}: \operatorname{End}_{R}\left(R\left[X_{1}, \ldots, X_{n}\right]\right) \longrightarrow \mathcal{P}\left(R^{n}\right)
$$

Theorem 3.5. ([12]) Let R be a finite field and F_{p} the simple field, where p is a prime. Then:
(1) $\sharp \mathcal{E}(T(R, 1))=\sharp \mathcal{B}(R) / \sharp R-2)$!, so $\mathcal{E}(T(R, 1))=\mathcal{B}(R)$ only if $R=$ F_{2}, F_{3};
(2) if $n \geq 2$ and $\chi(R) \neq 2$ or $R=F_{2}$ then $\mathcal{E}(T(R, n))=\mathcal{B}\left(R^{n}\right)$;
(3) if $n \geq 2, \chi(R)=2$ and $\sharp R>2$ then $\sharp \mathcal{E}\left(T(R, n)=\sharp \mathcal{B}\left(R^{n}\right) / 2\right.$. In fact,
$\mathcal{E}(T(R, n))$ is the alternating subgroup $\mathcal{A}\left(R^{n}\right)$ of the group $\mathcal{B}\left(R^{n}\right)$.

Now, any bijection of $\mathbb{S}^{n_{1}}(R) \times \cdots \times \mathbb{S}^{n_{l}}(R)$ yields an bijection of $R^{m_{1}+\cdots+m_{k}+k}$. Furthermore, for $\chi(R)=2$ there is an obvious polynomial isomorphism $\mathbb{S}^{n}(R) \rightarrow R^{n}$. Consequently, Theorem 3.5 leads to:

Corollary 3.6. Let R be a finite field. Then:
(1) if $\chi(R) \neq 2$ or $R=F_{2}$ then any bijection of $\mathcal{B}\left(\mathbb{S}^{n_{1}}(R) \times \cdots \times\right.$ $\mathbb{S}^{n_{l}}(R)$) is an invertible polynomial map;
(2) if $\sharp R>2$ and $\chi(R)=2$ then any bijection of $\mathcal{A}\left(\mathbb{S}^{n_{1}}(R) \times \cdots \times\right.$ $\mathbb{S}^{n_{l}}(R)$) is an invertible polynomial map.

Let R be a commutative and unitary ring. Then, we could consider the non-commutative and unitary ring $R\{i, j, k\}$ with $i^{2}=j^{2}=k^{2}=$ $-1, i j=k, j k=i, k i=j$. Given $q=r_{0}+r_{1} i+r_{2} j+r_{3} k \in R\{i, j, k\}$, we write $|q|^{2}=r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}$ and $\bar{q}=r_{0}-r_{1} i-r_{2} j-r_{3} k$. Then, $q \bar{q}=|q|^{2},\left|q_{1} q_{2}\right|^{2}=\left|q_{1}\right|^{2}\left|q_{2}\right|^{2}$ for $q, q_{1}, q_{2} \in R\{i, j, k\}$ and

$$
\mathbb{S}^{3}(R) \cong\left\{q \in R\{i, j, k\} ;|q|^{2}=1\right\}
$$

Hence, $\mathbb{S}^{3}(R)$ inherits the group structure which coincides with the previous one. Further, we have a group monomorphism

$$
\varphi: \mathbb{S}^{3}(R) \rightarrow U(R\{i, j, k\})
$$

given by $\varphi\left(r_{0}, r_{1}, r_{2}, r_{3}\right)=r_{0}+r_{1} i+r_{2} j+r_{3} k$ for $\left(r_{0}, r_{1}, r_{2}, r_{3}\right) \in \mathbb{S}^{3}(R)$. Notice that $r_{0}+r_{1} i+r_{2} j+r_{3} k \in U(R\{i, j, k\})$ if and only if $r_{0}^{2}+r_{1}^{2}+$ $r_{2}^{2}+r_{3}^{2} \in U(R)$. Hence, the map

$$
\rho: U(R\{i, j, k\}) \rightarrow U(R)
$$

given by $\rho\left(r_{0}+r_{1} i+r_{2} j+r_{3} k\right)=r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}$ for $r_{0}+r_{1} i+r_{2} j+r_{3} k \in$ $U(R\{i, j, k\})$ is a well-defined group homomorphism and the sequence

$$
1 \rightarrow \mathbb{S}^{3}(R) \xrightarrow{\varphi} U(R\{i, j, k\}) \xrightarrow{\rho} U(R)
$$

is exact.
Next, we consider the non-associative and unitary ring $R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$, where products $e_{s} e_{t}$ are defined by the Cayley algebra rules for $s, t=1,2,3,4,5,6,7$. Given $c=$ $r_{0}+r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+r_{4} e_{4}+r_{5} e_{5}+r_{6} e_{6}+r_{7} e_{7} \in R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$, write $|c|^{2}=r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+r_{5}^{2}+r_{6}^{2}+r_{7}^{2}$. Then, $\left|c_{1} c_{2}\right|^{2}=\left|c_{1}\right|^{2}\left|c_{2}\right|^{2}$ for $c_{1}, c_{2} \in R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$ and

$$
\mathbb{S}^{7}(R) \cong\left\{c \in R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\} ;|c|^{2}=1\right\}
$$

inherits a non-associative group structure.
Notice that we have a non-associative group monomorphism

$$
\varphi: \mathbb{S}^{7}(R) \rightarrow U\left(R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right)
$$

given by $\varphi\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right)=r_{0}+r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+r_{4} e_{4}+$ $r_{5} e_{5}+r_{6} e_{6}+r_{7} e_{7}$ for $\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right) \in \mathbb{S}^{7}(R)$. Notice that $r_{0}+$ $r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+r_{4} e_{4}+r_{5} e_{5}+r_{6} e_{6}+r_{7} e_{7} \in U\left(R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right)$ if and only if $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+r_{5}^{2}+r_{6}^{2}+r_{7}^{2} \in U(R)$. Hence, the map

$$
\rho: U\left(R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right) \rightarrow U(R)
$$

given by $\rho\left(r_{0}+r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+r_{4} e_{4}+r_{5} e_{5}+r_{6} e_{6}+r_{7} e_{7}\right)=r_{0}^{2}+$ $r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+r_{5}^{2}+r_{6}^{2}+r_{7}^{2}$ for $r_{0}+r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+r_{4} e_{4}+$ $r_{5} e_{5}+r_{6} e_{6}+r_{7} e_{7} \in U\left(R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right)$ is a well-defined nonassociative group homomorphism and the sequence

$$
1 \rightarrow \mathbb{S}^{7}(R) \xrightarrow{\varphi} U\left(R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right) \xrightarrow{\rho} U(R)
$$

is exact.
If R_{1}, R_{2} are commutative and unitary rings then there is a bijection $\mathbb{S}^{n}\left(R_{1} \times R_{2}\right) \cong \mathbb{S}^{n}\left(R_{1}\right) \times \mathbb{S}^{n}\left(R_{2}\right)$ for $n \geq 0$. Because the primary factorization $m=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$ yields an isomorphism of rings $\mathbb{Z}_{m} \xlongequal{\cong} \mathbb{Z}_{p_{1}^{k_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{k_{t}}}$, we derive a bijection

$$
\mathbb{S}^{n}\left(\mathbb{Z}_{m}\right) \cong \mathbb{S}^{n}\left(\mathbb{Z}_{p_{1}^{k_{1}}}\right) \times \cdots \times \mathbb{S}^{n}\left(\mathbb{Z}_{p_{t}^{k_{t}}}\right)
$$

Thus, the study of $\mathbb{S}^{n}\left(\mathbb{Z}_{m}\right)$ reduces to $\mathbb{S}^{n}\left(\mathbb{Z}_{p^{k}}\right)$ for any prime p and $k \geq 1$.
Proposition 3.7. If p is a prime and $k \geq 1$ then:

$$
\text { (1) } \sharp \mathbb{S}^{3}\left(\mathbb{Z}_{p^{k}}\right)= \begin{cases}p^{3 k-2}\left(p^{2}-1\right), & \text { if } p \text { is an odd prime; } \\ 2^{3 k}, & \text { if } p=2 ;\end{cases}
$$

(2) $\sharp \mathbb{S}^{7}\left(\mathbb{Z}_{p^{k}}\right)= \begin{cases}p^{7 k-4}\left(p^{2}-1\right)\left(p^{2}+1\right), & \text { if } p \text { is an odd prime } ; \\ 2^{7 k}, & \text { if } p=2 .\end{cases}$

Proof. (1) First, notice that $r_{0}+r_{1} i+r_{2} j+r_{3} k \notin U\left(\mathbb{Z}_{p^{k}}\{i, j, k\}\right)$ if only if $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2} \equiv 0(\bmod p)$ or equivalently, $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=0$ in the field \mathbb{Z}_{p}.

If p is an odd prime then, in view of [10, Theorem 6.26], the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=0$ has $p^{3}+(p-1) p$ solutions in \mathbb{Z}_{p}. Consequently,
the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2} \equiv 0(\bmod p)$ has $p^{4(k-1)}\left(p^{3}+(p-1) p\right)=$ $p^{4 k-3}\left(p^{2}+p-1\right)$ solutions in $\mathbb{Z}_{p^{k}}$. This implies that $\sharp U\left(\mathbb{Z}_{p^{k}}\{i, j, k\}\right)=$ $p^{4 k}-p^{4 k-3}\left(p^{2}+p-1\right)=p^{4 k-3}\left(p^{2}-1\right)(p-1)$.

If $p=2$ then the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=0$ has 2^{3} solutions in \mathbb{Z}_{2}. Consequently, the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2} \equiv 0(\bmod 2)$ has $2^{4(k-1)} 2^{3}=2^{4 k-1}$ solutions in $\mathbb{Z}_{2^{k}}$. This implies that $\sharp U\left(\mathbb{Z}_{2^{k}}\{i, j, k\}\right)=$ $2^{4 k}-2^{4 k-1}=2^{4 k-1}$.

Next, by Lagrange Four-Square Theorem, the map ρ : $U\left(\mathbb{Z}_{p^{k}}\{i, j, k\}\right) \rightarrow U\left(\mathbb{Z}_{p^{k}}\right)$ is onto for any prime p and $k \geq 1$. Hence, the short exact sequence

$$
1 \rightarrow \mathbb{S}^{3}\left(\mathbb{Z}_{p^{k}}\right) \xrightarrow{\varphi} U\left(\mathbb{Z}_{p^{k}}\{i, j, k\}\right) \xrightarrow{\rho} U\left(\mathbb{Z}_{p^{k}}\right) \rightarrow 1
$$

and $U\left(\mathbb{Z}_{p^{k}}\right) \cong \begin{cases}\mathbb{Z}_{p^{k-1}(p-1)}, & \text { if } p \text { is an odd prime; } \\ \{1\}, & \text { if } p=2 \text { and } k=1 ; \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{k-2}}, & \text { if } p=2 \text { and } k \geq 2\end{cases}$
lead to (1).
(2) If p is an odd prime then, in view of [10, Theorem 6.26], the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+r_{5}^{2}+r_{6}^{2}+r_{7}^{2}=0$ has $p^{7}+(p-1) p^{3}$ solutions in \mathbb{Z}_{p}. Consequently, the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+$ $r_{5}^{2}+r_{6}^{2}+r_{7}^{2} \equiv 0(\bmod p)$ has $p^{8(k-1)}\left(p^{7}+(p-1) p^{3}\right)=p^{8 k-5}\left(p^{4}+p-1\right)$ solutions in $\mathbb{Z}_{p^{k}}$. This implies that $\sharp U\left(\mathbb{Z}_{p^{k}}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right)=$ $p^{8 k}-p^{8 k-5}\left(p^{4}+p-1\right)=p^{8 k-5}\left(p^{2}-1\right)(p-1)\left(p^{2}+1\right)$.

If $p=2$ then the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+r_{5}^{2}+r_{6}^{2}+r_{7}^{2}=0$ has 2^{7} solutions in \mathbb{Z}_{2}. Consequently, the equation $r_{0}^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+$ $r_{5}^{2}+r_{6}^{2}+r_{7}^{2} \equiv 0(\bmod 2)$ has $2^{8(k-1)} 2^{7}=2^{8 k-1}$ solutions in $\mathbb{Z}_{2 k}$. This implies that $\sharp U\left(\mathbb{Z}_{2^{k}}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\right)=2^{8 k}-2^{8 k-1}=2^{8 k-1}$.

Then, we follow mutatis mutandis the procedure presented in (1) and the proof is completed.

Now, for $z=r_{0}+r_{1} i \in R[i]$, we write $|z|^{2}=r_{0}^{2}+r_{1}^{2}$ and $\bar{z}=r_{0}-r_{1} i$. Then, $z \bar{z}=|z|^{2}, z \in U(R[i])$ if and only if $|z|^{2} \in U(R)$ and

$$
\mathbb{S}^{3}(R) \cong\left\{\left(z_{0}, z_{1}\right) \in R[i] \times R[i] ;\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1\right\}
$$

Notice that there is an action

$$
\circ: \mathbb{S}^{1}(R) \times \mathbb{S}^{3}(R) \longrightarrow \mathbb{S}^{3}(R)
$$

such that $\lambda \circ\left(z_{0}, z_{1}\right)=\left(\lambda z_{0}, \lambda z_{1}\right)$ for $\lambda \in \mathbb{S}^{1}(R)$ and $\left(z_{0}, z_{1}\right) \in \mathbb{S}^{3}(R)$.

Next, $q \in U(R\{i, j, k\})$ if and only if $|q|^{2} \in U(R)$ for $q \in R\{i, j, k\}$, and

$$
\mathbb{S}^{7}(R) \cong\left\{\left(q_{0}, q_{1}\right) \in R\{i, j, k\} \times R\{i, j, k\} ;\left|q_{0}\right|^{2}+\left|q_{1}\right|^{2}=1\right\}
$$

Further, there is an action

$$
\circ: \mathbb{S}^{3}(R) \times \mathbb{S}^{7}(R) \longrightarrow \mathbb{S}^{7}(R)
$$

such that $\lambda \circ\left(q_{0}, q_{1}\right)=\left(\lambda q_{0}, \lambda q_{1}\right)$ for $\lambda \in \mathbb{S}^{3}(R)$ and $\left(q_{0}, q_{1}\right) \in \mathbb{S}^{7}(R)$.
Now, we mimic the Hopf maps $h: \mathbb{S}^{3} \longrightarrow \mathbb{S}^{2}$ and $H: \mathbb{S}^{7} \longrightarrow \mathbb{S}^{4}$ to define

$$
h(R): \mathbb{S}^{3}(R) \longrightarrow \mathbb{S}^{2}(R)
$$

by $h(R)\left(z_{0}, z_{1}\right)=\left(\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}, 2 z_{0} \bar{z}_{1}\right)$ for $\left(z_{0}, z_{1}\right) \in \mathbb{S}^{3}(R)$ and

$$
H(R): \mathbb{S}^{7}(R) \longrightarrow \mathbb{S}^{4}(R)
$$

by $H(R)\left(q_{0}, q_{1}\right)=\left(\left|q_{0}\right|^{2}-\left|q_{1}\right|^{2}, 2 q_{0} \bar{q}_{1}\right)$ for $\left(q_{0}, q_{1}\right) \in \mathbb{S}^{7}(R)$.
Proposition 3.8. Let R be a local commutative and unitary ring such that 2 is not a zero divisor of R. Then:
(1) $h(R)^{-1}\left(h(R)\left(z_{0}, z_{1}\right)\right)=\left\{\left(\lambda z_{0}, \lambda z_{1}\right) ;\right.$ for $\left.\lambda \in \mathbb{S}^{1}(R)\right\} \cong \mathbb{S}^{1}(R)$
for any $\left(z_{0}, z_{1}\right) \in \mathbb{S}^{3}(R)$;
(2) $H(R)^{-1}\left(h(R)\left(q_{0}, q_{1}\right)\right)=\left\{\left(\lambda q_{0}, \lambda q_{1}\right) ;\right.$ for $\left.\lambda \in \mathbb{S}^{3}(R)\right\} \cong \mathbb{S}^{3}(R)$
for any $\left(q_{0}, q_{1}\right) \in \mathbb{S}^{7}(R)$.
Proof. (1) Let $\left(z_{0}, z_{1}\right) \in \mathbb{S}^{3}(R)$. Then, certainly it holds $\left\{\left(\lambda z_{0}, \lambda z_{1}\right)\right.$; for $\left.\lambda \in \mathbb{S}^{1}(R)\right\} \subseteq h(R)^{-1}\left(h(R)\left(z_{0}, z_{1}\right)\right)$.

Suppose that $h(R)\left(w_{0}, w_{1}\right)=h(R)\left(z_{0}, z_{1}\right)$ for some $\left(w_{0}, w_{1}\right) \in \mathbb{S}^{3}$. Then, $\left|w_{0}\right|^{2}-\left|w_{1}\right|^{2}=\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}$ and $2 w_{0} \bar{w}_{1}=2 z_{0} \bar{z}_{1}$. Because $\left|w_{0}\right|^{2}+$ $\left|w_{1}\right|^{2}=1=\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}$ and $2 \in R$ is not a zero divisor, we get $\left|w_{0}\right|^{2}=$ $\left|z_{0}\right|^{2},\left|w_{1}\right|^{2}=\left|z_{1}\right|^{2}$ and $w_{0} \bar{w}_{1}=z_{0} \bar{z}_{1}$. Further, R is a local ring, so $\left|w_{0}\right|^{2}+\left|w_{1}\right|^{2}=1=\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}$ implies $\left|w_{0}\right|^{2} \in U(R)$ or $\left|w_{1}\right|^{2} \in U(R)$ and $\left|z_{0}\right|^{2} \in U(R)$ or $\left|z_{1}\right|^{2} \in U(R)$. Hence, $w_{0} \in U(R)$ or $w_{1} \in U(R)$ and $z_{0} \in U(R)$ or $z_{1} \in U(R)$.

If $z_{0} \in U(R)$ then we set $\lambda=z_{0}^{-1} w_{0}$; if $z_{1} \in U(R)$ then we set $\lambda=$ $z_{1}^{-1} w_{1}$. Thus, $\lambda \in \mathbb{S}^{1}(R)$ and $\left(w_{0}, w_{1}\right)=\left(\lambda z_{0}, \lambda z_{1}\right)$. Because $\left(z_{0}, z_{1}\right) \in$
$\mathbb{S}^{3}(R)$ implies $z_{0} \in U(R)$ or $z_{1} \in U(R)$, we get $h(R)^{-1}\left(h(R)\left(z_{0}, z_{1}\right)\right) \cong$ $\mathbb{S}^{1}(R)$.
(2) Given $\left(q_{0}, q_{1}\right) \in \mathbb{S}^{7}(R)$, we follow mutatis mutandis (1) to complete the proof.

By [1, Theorem 8.7], any commutative Artinian and unitary ring (in particular, any finite commutative and unitary ring) is a finite product of commutative Artinian local rings. Further, $\mathbb{S}^{n}\left(R_{1} \times R_{2}\right) \cong$ $\mathbb{S}^{n}\left(R_{1}\right) \times \mathbb{S}^{n}\left(R_{2}\right)$ for any commutative and unitary rings R_{1}, R_{2} and $n \geq 0$. Consequently, in view of Proposition 3.8, for a commutative Artinian and unitary ring R, and such that 2 is not a zero divisor in R, we get embeddings

$$
\bar{h}(R): \mathbb{S}^{3}(R) / \mathbb{S}^{1}(R) \longrightarrow \mathbb{S}^{2}(R) \text { and } \bar{H}(R): \mathbb{S}^{7}(R) / \mathbb{S}^{3}(R) \longrightarrow \mathbb{S}^{4}(R)
$$

In particular:
if R is a finite field with $\chi(R) \neq 2$ then Corollary 2.3 and Theorem 3.2 imply that $\bar{h}(R): \mathbb{S}^{3}(R) / \mathbb{S}^{1}(R) \longrightarrow \mathbb{S}^{2}(R)$ and $\bar{H}(R): \mathbb{S}^{7}(R) / \mathbb{S}^{3}(R) \longrightarrow$ $\mathbb{S}^{4}(R)$ are bijections;
if $R=\mathbb{Z}_{p^{k}}$ for an odd prime p and $k \geq 1$ then Theorem 2.5 and Proposition 3.7 lead to:

$$
\sharp \mathbb{S}^{2}\left(\mathbb{Z}_{p^{k}}\right) \geq \begin{cases}p^{3 k-2}(p+1), & \text { if } p \equiv 1(\bmod 4) \\ p^{3 k-2}(p-1), & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\sharp \mathbb{S}^{4}\left(\mathbb{Z}_{p^{k}}\right) \geq p^{4 k-2}\left(p^{2}+1\right) .
$$

Remark 3.9. Because
$\mathbb{S}^{15}(R) \cong\left\{\left(c_{0}, c_{1}\right) \in R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\} \times R\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\} ;\right.$
$\left.\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1\right\}$,
we make use the Hopf map $\mathcal{H}: \mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ to consider $\mathcal{H}(R): \mathbb{S}^{15}(R) \rightarrow$ $\mathbb{S}^{8}(R)$ for a commutative and unitary ring R, and state a result as in Proposition 3.8 as well.

We close the paper with:
Conjecture 3.10. If p is an odd prime and $k \geq 1$ then:
(1) $\sharp \mathbb{S}^{2}\left(\mathbb{Z}_{p^{k}}\right)= \begin{cases}p^{3 k-2}(p+1), & \text { if } p \equiv 1(\bmod 4) ; \\ p^{3 k-2}(p-1), & \text { if } p \equiv 3(\bmod 4) ;\end{cases}$
(2) $\sharp \mathbb{S}^{4}\left(\mathbb{Z}_{p^{k}}\right)=p^{4 k-2}\left(p^{2}+1\right)$.
and
Problem 3.11. Let p be an odd prime and $k \geq 1$. Find:
(1) $\sharp\left(\mathbb{S}^{n}\left(\mathbb{Z}_{p^{k}}\right)\right)$ for $n>4$ with $n \neq 7$;
(2) the group structure of $\mathbb{S}^{3}\left(\mathbb{Z}_{p^{k}}\right)$.

References

[1] M.F. Atiyah and I.G. MacDonald, Introduction to commutative algebra, Addison-Wesley Publishing Company, Reading, Massachusetts (1969).
[2] Ch.W. Ayoub, On finite primary rings and their groups of units, Compos. Math. vol. 21 (3), (1966), 247-252.
[3] J. Bochnak, On real algebraic morphisms into even-dimensional spheres, Ann. of Math. 128 (1988), 415-433.
[4] J. Bochnak and W. Kucharz, Realization of homotopy classes by algebraic mappings, J. Reine Angew. Math. 377 (1987), 159-169.
[5] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Erg. der Math. 36, Springer-Verlag, Berlin-Heidelberg-New York (1998).
[6] P. Deligne, La conjecture de Weil, I, Publ. Math. IHES 43 (1974), 273-307.
[7] M. Golasiński and F. Gómez Ruiz, Polynomial and regular maps into Grassmannians, K-Theory 26(1) (2002), 51-68.
[8] M. Golasiński and F. Gómez Ruiz, On maps of tori, Bull. Belg. Math. Soc. Simon Stevin 13, no. 1 (2006), 139-148.
[9] F. Lemmermeyer, Kreise und Quadrate modulo p, Math. Semesterber. 47 (2000), no. 1, 51-73.
[10] R. Lidl and H. Niederreiter, Finite fields, Addis-Wesley Publishing Company, London-Amsterdam-Don Mills, Ontario-Sydney-Tokyo (1983).
[11] J.-L. Loday, Applications algébriques du tore dans la sphere et de $\mathbb{S}^{p} \times \mathbb{S}^{q}$, in Algebraic K-theory II, Lect. Notes in Math. 342 (1973), 79-91.
[12] S. Maubach, Polynomial automorphisms over finite fields, Serdica Math. J. 27 (2001), 343-350.
[13] J.J. Rotman, An Introduction to the Theory of Groups, SpringerVerlag, New York (1995).
[14] R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163-168.
[15] R. Wood, Polynomial maps of affine quadrics, Bull. London Math. Soc. 25 (1993), 491-497.

Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Słoneczna 54, 10-710 Olsztyn, Poland
e-mail: marekg@matman.uwm.edu.pl
Departamento de Álgebra, Geometría y Topología
Facultad de Ciencias, Universidad de Málaga
Campus Universitario de Teatinos
29071 Málaga, España
e-mail: gomez_ruiz@uma.es

