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Spheres over finite rings and their
polynomial maps

The paper [8] grew out of our attempt to describe all polynomial self-maps
of the real and complex circle as well.

Introduction. The definition of the n-sphere S™ with n > 0 over
the reals can be extended to arbitrary commutative and unitary rings R
which leads to the n-sphere

S™(R) ={(ro,...,Tn) e R r§—|—~--+ri: 1}

over R. If R is finite then it is worthwhile to compute its cardinality
#(S™(R)). More generally, if V(F,) is an affine variety defined over a
finite field F;, we can not only consider the number §(V(Fq)), but also
g(V(Fym)) for m > 1. These can be nicely encoded by the Hasse-Weil

zeta function of V: ((V;X) = exp(>__; WX’”) € Q[[X]] which
satisfies a number of fundamental properties, known as the Weil conjec-
tures, which are known to be true mainly by the work [6] of Deligne.

Like for S, the circle S'(R) is equipped in an abelian group structure.
Further, S'(—) is a functor from commutative and unitary rings into
abelian group. In particular, for the field Q of rational numbers, points
of S1(Q) are determined by Pythagorean triples and S'(Q) is dense in
the circle St. If R is a finite ring then S'(R) is a finite abelian group and
it is a natural problem to determine its structure.

In [9], the author considers the group structure in S'(R), with R
being a commutative and unitary ring, determines this structure in the
case when R is either a finite field or the ring Z,, of integers modulo m,
and describes the group structure on conic sections.

In particular, by [9], the group S*(R) is cyclic provided R is a field or
the ring Z,,» of integers modulo p¥ for a prime odd number p. Further, in
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[9, p. 54] the author has stated: The case p = 2 is particularly interesting
(or nasty, depending on your point of view [oder ldstig, je nachdem, wie
man es sieht]).

The aim of Section 1 is to simplify proofs of some results from [9],
present their generalizations and state in Theorem 2.5:
If p is a prime and k > 1 then

Zz}*l(p—w Z:f p=1(mod 4);
Sz, = { Ly if p=3(mod 4);
Z3, if k=1

73 ®LH ® LY 5, if k>2.

The paper [8] grew out of our attempt to describe all polynomial self-
maps of the real and complex circle as well. Then, some results from
[11, 14, 15] on spheres and their polynomial maps into spheres over any
field has been transfered. In virtue of Wood [14] (see also [5, Chapter
13]) a necessary condition for the existence of a non-constant polynomial
map S" — S™ of spheres for m > n is that 2kt > m > n > 2% for
some k > 0. It was shown in [15] that from the homotopy point of view
nothing is lost by complexifying the problem of which homotopy classes
of maps of spheres contain a polynomial representative. Furthermore in
virtue of [7] any complex polynomial self-map of S?(C) yields a regular
self-map of the sphere S? in a canonical way. Then Loday [11] using
algebraic and topological K-theory proved some results on polynomials
maps into S™. For instance, every polynomial map from the torus T" to
S™ is null-homotopic if n > 1. For n even those results were extended in
[3, 4] to regular and then in [5] to polynomial maps S™ x -+ x S™ — S§"
with n =nq + -+ - + ng odd. Certainly, polynomial maps S™*(R) X - -- X
S™k(R) — T™(R) are worth to be studied from the algebraic point of
view for any field R. We made use of the abelian group structure on
the sphere S'(R) to show in [8, Corollary 2.11] that for any polynomial
self-map f : SY(R) — S!(R) there are a € S!(R) and an integer n such
that f(z) = az™ for any 2z € S'(R) provided the field R is infinite. All
polynomial maps S™!(R) x --- x S™(R) — T"(R) are listed in [8] for
any infinite field R.

Section 2 takes up the systematic study of spheres S"(R) over a fi-
nite field R and polynomial maps S™(R) X --- x S™*(R) — S™(R) x
<o x S™(R) with mq,...,mg,n1,...,ny > 0. Theorem 3.2 shows the
cardinality §(S™(R)) of the n-sphere S"(R):
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If the characteristic x(R) # 2 then for any number n > 1 it holds:

(tR)" — (ﬁR)fz((—l)%), if n is even;

18" (R) = { ((R)" — (1R)"= n((—1)"=") if n is odd,

where
1, if the equation X2 +1 =0 has a solution

n(l) =1andn(-1) = ink;
—1 otherwise
and Corollary 3.4 asserts that any such any map S™*(R) x---xS§™(R) —
S"(R) x -+ x S™(R) is a polynomial one.

1. Circles over a finite ring. Let R be a commutative and
unitary ring. The set

SYR) ={(rg,r1) € Rx R; 7’3 +r% =1}

is called the 1-sphere or the circle over R.

Observe that on S'(R) there is an abelian group structure de-
fined by (ro,7r1) o (r(,7) = (rory — riry, ror; + rir}) for any points
(ro,r1), (rh, 7)) € SY(R). Writing SO(2, R) for the group of special or-
thogonal 2 x 2-matrices over R, we may easily show

Remark 2.1. (1) For any commutative and unitary ring R there is an
isomorphism of groups

SY(R) = SO(2, R)

—r
(2) If Ry, Ry are commutative and unitary rings then there is an iso-
morphism of groups S'(R; x Ry) = SY(R;) x SY(Ry).

determined by the assignment (rg,71) — ( "o :1> for (rg,r1) € SY(R).
0

Next, consider the quotient ring R[i] = R[X]/(X?+1), where i denotes
the class of X in R[X]/(X? + 1) and write U(R) for the multiplicative
group of R. Let x(R) denote the characteristic of R. Then, we may state:

Proposition 2.2. For any unitary ring R there is a group monomor-
phism SY(R) — U(R[i]). Further:
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(1) if x(R) = 2 then SY(R) = {(1 +r + s,7); 7,5 € Rwiths®> = 0}
and there is a splitting short exact sequence

0—R"—>SYR)—> R—1,

where R is the additive group of R and the group R = {s € R;s*> = 0}
with s1 0 o = 81 + 8o + S182 for s1,89 € R;
(2) if i € R with i> = —1 then there is an exact sequence of abelian
groups
0 — Ry — SY(R) = U(R),

where Ry = {r € R; 2r = 0};
(i) if 2 € U(R) then there a group isomorphism

S'(R) = U(R);
(ii) if x(R) = 2 then there is a splitting short exact sequence
0—R—SYR)— Ry — 1,

where Ry = {r € Ry r* = 1};
(3) if i € R then there is an exact sequence

1 — SYR) = U(R[i]) & U(R)
+

of abelian groups, where p(ro + r1i) = r3 + 12 for ro + r1i € U(RJ[i]).
Further, if R is a finite field then U(R[i]) & U(R) is onto.

Proof. Certainly, the map ¢ : S'(R) — U(R[i]) given by ¢(rg,r1) =
ro + r1i for (rg,71) € SY(R) is a group monomorphism.

(1) Let x(R) = 2. If r,s € R with s2 =0 then (1+ 7+ s,7) € S}(R).
Conversely, if (rg,71) € SY(R) then rog = 1+ 71 + (1 4+ 19 + 71) and
(1479 +71)? =0. Hence, SY(R) = {(1+7 + s,7); r,s € Rwiths?> = 0}.
Further, one can easily see that the map ¢ : Rt — S*(R) given by ¢(r) =
(1+r,7) for r € R is a group monomorphism. Write R = {s € R;s*> =0}
and s1 0 89 = s1 + S9 + s159 for s1,59 € R. Then, (R,o) is an abelian
group and the map p : SY(R) — R given by p(1 4+ r + s,r) = s for
(1+7r+s,7) € SY(R) is an epimorphism. The sequence

0= Rt ASYR) B R—0

is exact and the map p’ : R — S'(R) given by p/(s) = (145,0) fors € R
determines its splitting.
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(2) Write Ry = {r € R; 2r = 0}. Then, the maps
a:Ry— SYR) and ¢:SY(R) = U(R)

given by a(r) = (1+r,r) for r € R and ¢(rg, 1) = 1o+ 1t for (ro,r1) €
SY(R) are group homomorphisms with Kera = {0} and Ima = Ker ¢.
Notice that r € U(R) with r +r~! = 2s for some s € R implies (s, —(r —
s)i) € SY(R) and ¢(s, —(r — s)i) = r. Consequently,

Imp={rcU(R);r+r ' c2R}.

(i) If 2 € U(R) then Ry = {0} and r +r~! € Im ¢ for r € U(R).
Hence, the map
¥ :U(R) = S'(R)

given by (r) = (271 (r~t +7),271(r~1 —1)i) for r € U(R) is the inverse
of the ¢ : SY(R) — U(R) above.

(i) If x(R) = 2 then Rp = R, Imp = {r € R; > = 1} = R; and the
short exact sequence

0—R"—=SYR) =R —1

splits as an exact sequence of elementary 2-groups.

(3) Consider the group homomorphism p : U(RJi]) = U(R) given by
p(ro +r1i) = 13 + r} for ro + r1i € U(R[i]). Then, Kerp = S'(R) and
consequently we get the required short exact sequence 1 — S'(R) —
U(R[i]) = U(R).

Let now R be a finite field and define the group endomorphism = :
U(R) — U(R) given by m(r) = r? for r € U(R). If x(R) = 2 then 7 is
an automorphism and so U(R[i]) & U(R) is onto.

Now, suppose that y(R) # 2 and write §X for the cardinality of a
finite set X. Notice that the group endomorphism U(R) — U(R) given
by 7 +— 72 for r € U(R) leads to kerm & Zy and #{r*;r € U(R)} =
@. Given r € U(R), we follow [10, Remark 6.25] to consider the sets
A={rd;r0 e UR)U{0}} and B = {r —r}; 11 € U(R) U {0}}. Then,
A = #B = @ + 1 and consequently A N B # () which implies that
p(ro +rii) =r.

]

Writing Z, for the cyclic group with order m, we deduce (see |9,
Korollar 6]):
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Corollary 2.3. Jf R is a finite field then there is an isomorphism of
groups:
(1) SY(R) =~ (Z3)* provided 4R = 2% and x(R) = 2;

Ny i = 1l (mo ;
(2)81(1{):{21{1—17 fER =1 (mod4);

u .
tri1s if tR=3(mod4). provided x(R) # 2.

Proof. (1) follows directly from Proposition 2.2(2)(ii).

(2) If 4R = 1(mod 4) then ¢ € R and by Proposition 2.2(2), we get
an isomorphism S'(R) = U(R). Hence, the well-known isomorphism
U(R) = ZELR_l yields S'(R) = ZEFR_l.

If R = 3 (mod 4) then, by Fermat Theorem on Sums of Two Squares,
i ¢ R. Then, by Proposition 2.2(3), there is an exact sequence 1 —
SYR) — U(R[i]) — U(R) — 1 of abelian groups. Because R and R[]
are finite fields, there are isomorphisms U(R) = Zsg—1 and U(R[i]) =
Zsry2—1- Consequently, we deduce SYR) = Z;RH and the proof is
complete.

|

Let now R = Z,,, the ring of integers modulo m. The primary

factorization m = p’fl pft yields an isomorphism of rings Z,, —

Zpkl X e X Zpkt. Because S!(—) is a product preserving functor from
1 t

unitary rings to abelian groups, we get an isomorphism
SYZm) S SHZiy) X -+ X SHZ )
P1 Py

and §SY(Z,,) = ﬁSl(Zpkl) e fiSl(ZPkt ). Hence, the problem of determin-
1 t

ing the structure of S'(Z,,) and #S*(Z,,) has been reduced to the case of
prime powers p*. By the claim in [9, p. 54], the group S'(Z,) is cyclic
provided p is an odd prime. A proof of that is presented below.

Lemma 2.4. [fp is a prime and k > 1 then

Z;'k,l(pfl) <) Z;k,l( if p=1(mod4);

p—1)’
+ + . _ .
U(Zyr[i]) = Lppeos ® Ly 21y if p=3(mod4);
Zs, if p=2andk = 1;
Ly ® Ly © Ly, if p=2andk > 2.

Proof. First, let p be an odd prime. Recall the well-known the
isomorphism U(Zyx) = ((p) + 1) ® U(Z,) = Z;‘k,l(pil) stated in [13,
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Theorem 6.7], where (p) is the nilpotent principal ideal of Z,x generated
by p.

Let p = 1(mod 4) and i € U(Z,») with order four. Because i € Z,_;
and —1 is the only element in Z,_; with order two, we deduce that
i* = —1. Consequently, Zx[i| = Z,. X Zyx and U(Zy[i]) = U(Zyr) X
U(Zpe) = L1y & Ly

If p =3 (mod 4) then, by Fermat’s Theorem on Sums of Two Squares,
i & Zyr. Given ro + 114 € Zyr[i], we see that ro + 111 € U(Zy[i]) if and
only if r§ +rf € U(Z,) or equivalently, if and only if rq € U(Z,x) or r1 €
U(Z,). Hence, Z,x[i] is a p-primary ring with the nilpotent principal
prime ideal (p) and f(p) = p>*~Y. Then, the residue filed Z,x[i]/(p) =
Z,> and in view of [2, Proposition 1], we deduce that U(Z,x[i]) = ((p) +
® U(Z,2). Following the proof of [13, Theorem 6.7], we get (1 +

1

1)
p)P 7 (14pi)?' " # 1 (mod p!) and (1+p)P ", (14pi)? " =1 (mod p')
for [ > 2. Because <1+p>ﬂ<1+pi> = {1}, we deduce a group isomorphism
(p)+1) = (1+p)y®(1+pi) = Z:k_l @Z:k_l. Consequently, we get that
U(Zp’“ [Z]) = Z;—k—l D Z;_k71(p2,1)~
Let now p = 2. First, it is obvious that U(Zs[i]) = {1,i} = Z,.
Hence, we can assume that & > 2. Recall form [13, Theorem 5.44] that
U(Zor) = <5> ® < — 1> = Z;rk_rz @ Z; for £ > 2. Because r¢ + rii €
U(Zyx[i]) if any only if rg is odd and 7y is even or wvise versa, we get
U (Zor[i]) = 226=1. Further, (1 + 2i)2" " = 20=1 + 1 + 21=1j (mod 2"
for I > 2. This implies that 2*~! is the order of 1 + 2i. Next, the
intersection of any two of the subgroups <Z>, <5> and <1 + 2i> is the
trivial group and #U(Zx [i]) = 22¢~1. Thus, we deduce that U(Zqx[i]) =
(i) @ (5) ® (1 4 2i) = Zy> ® Zos—2 & Loe— for k > 2 and the proof is
complete.
([l

Now, we are in a position to show the main result of this Section:

Theorem 2.5. [fp is a prime and k > 1 then

Zz_ot’cfl(p—m Z:f p = 1(mod 4);
SYZ,) = L1 (py1y) if p=3(mod4);
Zj, if k=1

73 ® L ® LY 5, if k>2.
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Proof. (1) If p = 1(mod 4) then i € Z,.. Because 2 € U(Z,), by
Proposition 2.2(2), the map p : S'(Z,x) — U(Z,x) given by p(ro,r1) =
ro + 714 for (ro,71) € S'(Z,x) is an isomorphism of groups. Thus,

SYZp) 2 U(Zy) 2 T2,

pEi(p-1):

(2) If p = 3(mod 4) then i ¢ Zyx. Further, U(Z,x) = Z;rk_l(p_l)
and, in view of Lemma 2.4, it holds U(Z,x[i]) = Z;rk_l ® Z;k_l(pz,l)-
Next, consider the map p : U(Zy[i]) — U(Z,x) defined in Propo-

sition 2.2(2). Then, the restriction p|,+ is an isomorphism and,
k_1

p
in view of Proposition 2.2(3), the restriction p\Z+2 is onto. Conse-
—1

quently, p : U(Zyr[i]) — U(Zyx) is onto and the 'short exact sequence
1 — SY(Zy) = U(Zy[i]) & U(Zyr) — 1 from Proposition 2.2(3) yields
~ +
SHZy) = L1 (pr1)°
(3) For the group homomorphism p : U(Zgx[i]) — U(Zyr) given by
p(ro +m1i) = r¢ + 1% for ro + r1i € U(Zyx[i]), by Proposition 2.2(3), we
get the short exact sequence

1 = SY(Zaor) = U(Zagr[i]) 2 U(Zok)

of abelian groups with & > 1.

Because U(Zz) = {1}, Lemma 2.4 yields that S'(Z,) = U(Zs]i]) =
Z3. If k > 2 then by the proof of Lemma 2.4, we have that U(Zqx[i]) =
(1) ® (5) ® (1 +2i) = Zp2 ® Zyk—2 ® ZLyk—1. Because p(i) = 1, p(5) = 52,
p(1+2i) =5 and U(Zyr) = (5) & ( — 1) = Zf,_, & Z3 , we deduce that
Imp = <5> = Z;‘k,z. Consequently, the exact sequence

1= SYZox) = U(Zogk[i]) D Zop—2 — 1

yields SY(Zor) = ZF @ Z; ® Z;rk,z for k > 2 and the proof is complete.
O

2. Spheres over finite fields and their polynomial
maps. Let R be a commutative and unitary ring. Then, we notice:
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Remark 3.1. For any commutative and unitary ring R there is a bijec-
tion S*(R) = SU(RJi]) determined by the assignment

ro+ 11t ro 413
(ro,71,72,73) > (7"2 +ryi T — T1i>
for (rg,7r1,72,73) € S}(R). Consequently, S*(R) inherits the group struc-
ture from SU(R][i]). Notice that S*(R) = {4 € SU(RJi]); tr (4) = 0}
provided 2R = 0, where tr : SU(RJ[i]) — RJ[i] is the trace function.

Notice that there is an embedding Ry — S™(R) given by
(To,...,rn_l) — (1 +7r9+ - +Tn_1,7“0,...,7“n_1)

for (ro,...,rn—1) € Ry, where Ry = {r € R; 2r = 0}. In particular,
R™ < S™(R) provided x(R) = 2. If R is a field with x(R) = 2 then
certainly there is a bijection S”(R) = R™ and #S"™(R) = (§R)".

Now, suppose that R is a finite field with x(R) # 2. Basing on [10,
Theorems 6.26 and 6.27], we obtain:

Theorem 3.2. [f R is a finite field with x(R) # 2 then for any number
n > 1 it holds:

(BR)" + (ﬁR)%z((—l)%),ifn is even,;

(ER)" — (1R) = n((=1)"="), ¥f n is odd,

() = {

1, if the equation x? +1 =0
where (1) =1 and n(—1) = has a solution in R;

—1, otherwise.

Let R = p* for an odd prime p. Notice that n(—1) = 1 if and only if
p =1(mod4) or k is an even number.

To examine polynomial maps P = (Fp,...,P,) : S?(R) — S"(R) in
that case a general result would be useful.

Proposition 3.3. Let R be a field and S C R™Y, T C R finite
subsets. Then any map f: S — T is a polynomial one for m,n > 0.

Proof. Given a finite subset S C R™*! there is obviously a finite
subset So = {r1,...,7,} C R with S C S()"H. It is well-know that there
are interpolation polynomials P,, (X), ..., P, (X) € R[X] with P, (z;) =
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Opir; for i,5 =0,...,k. Next for any s = (r;,...,7,,) € S§**" consider
the polynomial
Py(Xo..., Xp) =P,

Tig

(Xo)+ -+ Pr. (Xn) € R[Xo, ..., Xom]-

Then Py(s') = dss for any s, s’ € Sg+.

Now, given a map f : § — T write f(s) = (fo(s),..., fn(s)) for
any point s € S. Then, the polynomial map S — T determined by
polynomials:

seS
Qn(X0, -, Xm) =Y ful($)Ps(Xo, -, Xom)
ses
coincides with f : S — T and the proof is complete. O

In particular, the following conclusion follows.

Corollary 3.4. Let R be a finite field. Then any map S™(R) X
<o X S™(R) — S"™(R) x --- x S"(R) is a polynomial one for
Myeeey Mgy N1, .,ny > 0.

Let Endg(R[Xi,...,X,]) be the set of all R-homomorphisms
of R[X1,...,X,] and Autr(R[Xi,...,X,]) the group of all its R-
automorphisms. Write T(R,n) for the tame polynomial auto-
morphism subgroup of Autr(R[Xi,...,X,]) generated by (X; +
F(Xo,...,X,),Xs,...,X,) for all F(Xy,...,X,) € R[Xa,...,X,],
P(R™) for the set of all self-maps of R™ and B(R™) the group of all
bijections of R™. Then, we get an obvious map

£ : Endg(R[X1,...,X,]) — P(RY).

Theorem 3.5. ([12]) Let R be a finite field and F, the simple field,
where p is a prime. Then:

(1) SE(T(R. 1)) = tB(R) /4R — 2)1, s0 £(T(R,1)) = B(R) only if R =
F27 F3;'

(2) if n > 2 and x(R) # 2 or R = Fy then E(T'(R,n)) = B(R");

(3) ifn > 2, x(R) =2 and 4R > 2 then §€(T(R,n) = tB(R")/2. In
fact,

E(T(R,n)) is the alternating subgroup A(R"™) of the group B(R").
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Now, any bijection of S"'(R) x --- x S™(R) yields an bijection of
Rmat+metk  Furthermore, for x(R) = 2 there is an obvious polynomial
isomorphism S"(R) — R™. Consequently, Theorem 3.5 leads to:

Corollary 3.6. Let R be a finite field. Then:

(1) if x(R) # 2 or R = Fy then any bijection of B(S™(R) X -+ x
S™(R)) is an invertible polynomial map;
(2) if tR > 2 and x(R) = 2 then any bijection of A(S™(R) X --- x
S™(R)) is an invertible polynomial map.

Let R be a commutative and unitary ring. Then, we could consider
the non-commutative and unitary ring R{i,j,k} with i* = j2 = k? =
—1,ij = k,jk = i,ki = j. Given q = ro + 1@ + roj + r3k € R{4, j, k},
we write |q|? = r2 + 72 + 13+ 13 and § = rg — 719 — roj — r3k. Then,

qq = |Q|2» lq162 2= \611|2|Q2|2 for q,q1,q2 € R{i,j,k} and

S*(R) = {q € R{i,j, k}; |al* = 1}.

Hence, S3(R) inherits the group structure which coincides with the pre-
vious one. Further, we have a group monomorphism

v : S*(R) = U(R{i,j,k})

given by ¢(ro,r1,72,73) = 1o + r1i +r2j + r3k for (ro,r1,72,73) € S*(R).
Notice that ro + r1i + rej + 13k € U(R{i, j, k}) if and only if 73 + r? +
r3 + 13 € U(R). Hence, the map

p: U(R{i,j,k}) = U(R)

given by p(ro+rii+rej+rsk) = rd+r?+r3+r3 for ro+rii+rej+rsk €
U(R{i,j, k}) is a well-defined group homomorphism and the sequence

1= S3(R) B UR{, j, kY) B UR)

is exact.

Next, we consider the non-associative and unitary ring
R{ey,e2,e3,e4,€5,€e6,e7}, where products ese; are defined by
the Cayley algebra rules for s,t = 1,2,3,4,5,6,7. Given ¢ =
rotrieitraestrsestroestrses+rees+rrer € R{eq, ea, €3, €4, €5, €6, €7},
write [c|?2 =13 +rf+r3+r3+ri+ri+rZ+7r2. Then, |cica|? = |e1[?|e2|?
for ¢1,co € R{e1,ea,€3,€4,€5,¢6,e7} and

ST(R) = {c € R{e1,e2, €3, €4,€5,€6,€7}; |c|* =1}
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inherits a non-associative group structure.
Notice that we have a non-associative group monomorphism

"2 87(R) — U(R{ela €2, €3, €4, €5, €6, 67})

given by ©(ro,71,72,73,74,75,76,77) = 7o + T1€1 + T2€2 + T3€3 + 1464 +
rses+reee +rrer for (ro,71,72,73,74,75,76,77) € ST(R). Notice that ro+
rie1+roea+raes+riest+rses+reest+rrer € U(R{er, e, e3,e4,€5,€6,€7})
if and only if rZ + 7} + 73 + 73 +rf +r2 + 12 + r2 € U(R). Hence, the
map
p:U(R{e1,ea,e3,e4,€5,€5,67}) = U(R)

given by p(rg + rie1 + roes + rses + raeq + rses + reeg + rrer) = rg +
T%+T§+T§+Ti+r§+r§+r$ for rg + r1e1 + roes + r3e3 + ra€4 +
rses + ree + rrer € U(R{e1, ez, e3,¢e4,€5,€6,e7}) is a well-defined non-
associative group homomorphism and the sequence

1— 87(R) i) U(R{el,62,63,64,65,66767}) ﬁ) U(R)

is exact.

If Ry, Ry are commutative and unitary rings then there is a bijection
S™(Ry x Rg) = S™(R1) xS™(R3) for n > 0. Because the primary factoriza-
tionm = p’fl .- -pft yields an isomorphism of rings Z,, 5 Zp’fl X ~><prt ,
we derive a bijection

S (Zn) = SMZps) X - X S(Z o).

Thus, the study of S™(Z,,) reduces to S"(Z,) for any prime p and k > 1.

Proposition 3.7. If p is a prime and k > 1 then:

3k—2/,2 o ‘
3 _J D (p? —1), ifpis an odd prime;
W 150 = { B o

Th—4(, 2 2 o ,
7 [ (p* — D) (p*+1), ifp isan odd prime;

Proof. (1) First, notice that ro + r1i + roj 4+ 13k & U(Zpx {3, j, k}) if
only if 72 +r? +r2 +r2 = 0 (mod p) or equivalently, r3 +r? +r3 +r3 =0
in the field Z,.

If p is an odd prime then, in view of [10, Theorem 6.26], the equation
78 + 1?4+ 75 +r3 = 0 has p> + (p — 1)p solutions in Z,. Consequently,
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the equation 72 + 7 + 73 + 72 = 0 (mod p) has p**~V(p3 + (p — 1)p) =
p**=3(p? + p — 1) solutions in Z,.. This implies that §U(Z,{i, j, k}) =
p* =P+ p - 1) =p"* (P — D(p - 1)

If p = 2 then the equation 73 + r? + 73 + r2 = 0 has 23 solutions
in Z,. Consequently, the equation rZ + r% + 3 + r2 = 0(mod?2) has
24(h=1)93 = 24k=1 solutions in Zyr. This implies that U (Zox{i, j, k}) =
24k: _ 24k71 — 2414:71.

Next, by Lagrange Four-Square Theorem, the map p
U(Zyi{i, j,k}) — U(Zyx) is onto for any prime p and k& > 1. Hence,
the short exact sequence

1= S¥Zyk) 5 U(Zp i, 3 k}) D UZpr) — 1

p
and U(Zy) = ¢ {1}, ifp=2and k =1;
Zo @ Zigk—2, ifp=2andk>2

Zipr-1(p—1), if p is an odd prime;

lead to (1).

(2) If p is an odd prime then, in view of [10, Theorem 6.26], the
equation 12 + 77 + 13 + 73 + 13 +r2+r2+7r2 =0 has p* + (p — 1)p?
solutions in Z,. Consequently, the equation 73 + r% + r3 + r3 + 7 +
1 + 73 + 77 = 0(mod p) has p**= D (p7 + (p — 1)p?) = ™2 (p* + p 1)
solutions in Zyx. This implies that §U(Z,x{e1,e2,e3,€4,€5,€6,€7}) =
P =p Pt +p = 1) = (" — (p — 1)(p* + 1)

If p = 2 then the equation 73 +7% +7r3 +r2 +r? +r2 +r2 +72 = 0 has
27 solutions in Z. Consequently, the equation 73 + 72 + 73 + 2 + r2 +
72 4+ 72 4+ 72 = 0(mod 2) has 28(k-=1)27 — 28k=1 golutions in Zyx. This
implies that §U(Zox {e1, €2, €3, €4, €5, €5, e7}) = 288 — 28k—1 — 98k—1

Then, we follow mutatis mutandis the procedure presented in (1) and
the proof is completed. O

Now, for z = rg +r1i € R[i], we write |2|?> = rZ + 7% and z = rg — r1i.
Then, zz = |2|2, 2 € U(RJi]) if and only if |z|> € U(R) and

S*(R) 2 {(z0,21) € Ri] x R[il; |z0]* + |21 = 1}.
Notice that there is an action
o : SY(R) x S*(R) — S*(R)

such that X o (2o, 21) = (A2, Az1) for A € SY(R) and (29,21) € S}(R).
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Next, ¢ € U(R{i,j,k}) if and only if |¢|*> € U(R) for q € R{i, j,k},
and

S7(R) = {((107611) € R{Z7]7k} X R{Zu%k}a ‘q0|2 + |Q1|2 = 1}
Further, there is an action
0:S*(R) x S"(R) — S7(R)

such that Ao (go,q1) = (Ago, A\q1) for X € S*(R) and (o, q1) € S"(R).
Now, we mimic the Hopf maps h : S — S? and H : 7 — $* to
define
h(R) : S*(R) — S*(R)

by h(R)(zo0, 21) = (|z0|> — |21]2,220%1) for (20, 21) € S*(R) and
H(R) :S"(R) — S*(R)

by H(R)(g0,q1) = (lg0]® — |g1]%,2¢0q1) for (qo,q1) € S"(R).

Proposition 3.8. Let R be a local commutative and unitary ring such
that 2 is not a zero divisor of R. Then:

(1) AR ((R) (20, 1)) = {(Aeo, A21); for A € SH(R)) = S} (R)
for any (20,21) € S*(R);
(2) H(R)™ (M(R)(q0,q1)) = {(Ao, Aq1); for X € S*(R)} = S*(R)

for any (qo0,q1) € S(R).

Proof. (1) Let (29,21) € S*(R). Then, certainly it holds
{(A\z0,Az1); for A € SY(R)} € h(R)~Y(h(R) (20, 21))-

Suppose that h(R)(wo,w;) = h(R)(z0,21) for some (wp,w;) € S3.
Then, |wo|? — |wi|? = |20|? — |21]? and 2wew; = 220%;. Because |wg|? +
|w1]? = 1 = |20]? + |21]* and 2 € R is not a zero divisor, we get |wg|? =
|z0/%, |w1|* = |21]® and wow; = 29z;. Further, R is a local ring, so
lwo|? + |w1|* = 1 = |20]® + |21|* implies |wg|? € U(R) or |wi|* € U(R)
and |z9|? € U(R) or |z1]?> € U(R). Hence, wg € U(R) or w; € U(R) and
z0 €U(R) or z; € U(R).

If 2o € U(R) then we set A = z; "wp; if 21 € U(R) then we set A\ =
27 twy. Thus, A € SY(R) and (wo,w;) = (Az0,A21). Because (29, 21) €
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S3(R) implies 2o € U(R) or 21 € U(R), we get h(R)~'(h(R)(z0,21))
SY(R).

(2) Given (qo, q1) € S7(R), we follow mutatis mutandis (1) to complete
the proof.

O

By [1, Theorem 8.7], any commutative Artinian and unitary ring (in
particular, any finite commutative and unitary ring) is a finite prod-
uct of commutative Artinian local rings. Further, S"(R; x Ra) =
S"™(R1)xS™(Rz) for any commutative and unitary rings Ry, R2 and n > 0.
Consequently, in view of Proposition 3.8, for a commutative Artinian and
unitary ring R, and such that 2 is not a zero divisor in R, we get embed-
dings

h(R) : S*(R)/S*(R) — S*(R) and H(R):S"(R)/S*(R) — S*(R).

In particular:

if R is a finite field with x(R) # 2 then Corollary 2.3 and Theorem 3.2
imply that h(R) : S*(R)/S'(R) — S?(R) and H(R) : S(R)/S*(R) —
S*(R) are bijections;

it R = Zyx for an odd prime p and k£ > 1 then Theorem 2.5 and
Proposition 3.7 lead to:

1S%(Zy) >

PP 2(p+1), ifp=1(mod4);
p*=2(p—1), ifp=3(mod4)

and
jjS4(Zpk) > p4k*2(]02 +1).

Remark 3.9. Because
SY™(R) = {(co,c1) € R{e1, ea, €3, €4, €5, ¢€6,e7} x R{e1, e, e3, €4, €5, €6, €7 };

lcol* + Jer|? =1},

we make use the Hopf map H : S — S8 to consider H(R) : S¥*(R) —
S#(R) for a commutative and unitary ring R, and state a result as in
Proposition 3.8 as well.

We close the paper with:
Conjecture 3.10. If p is an odd prime and k& > 1 then:

[ P 2(p+1), ifp=1(mod4);
(1) ﬁSQ(Zpk) = { p?’k_z(p —1), ifp=3(mod4);

(2) #5*(Zyr) = p™ 2 (p* + 1).
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and

Problem 3.11. Let p be an odd prime and k£ > 1. Find:
(1) #(S™(Zyr)) for n > 4 with n # 7,
(2) the group structure of S*(Zx).
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