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Spheres over finite rings and their
polynomial maps

The paper [8] grew out of our attempt to describe all polynomial self-maps
of the real and complex circle as well.

Introduction. The definition of the n-sphere Sn with n ≥ 0 over
the reals can be extended to arbitrary commutative and unitary rings R
which leads to the n-sphere

Sn(R) = {(r0, . . . , rn) ∈ Rn+1; r20 + · · ·+ r2n = 1}

over R. If R is finite then it is worthwhile to compute its cardinality
](Sn(R)). More generally, if V (Fq) is an affine variety defined over a
finite field Fq, we can not only consider the number ](V (Fq)), but also
](V (Fqm)) for m ≥ 1. These can be nicely encoded by the Hasse-Weil
zeta function of V : ζ(V ;X) = exp(

∑∞
m=1

](V (Fqm ))
m Xm) ∈ Q[[X]] which

satisfies a number of fundamental properties, known as the Weil conjec-
tures, which are known to be true mainly by the work [6] of Deligne.

Like for S1, the circle S1(R) is equipped in an abelian group structure.
Further, S1(−) is a functor from commutative and unitary rings into
abelian group. In particular, for the field Q of rational numbers, points
of S1(Q) are determined by Pythagorean triples and S1(Q) is dense in
the circle S1. If R is a finite ring then S1(R) is a finite abelian group and
it is a natural problem to determine its structure.

In [9], the author considers the group structure in S1(R), with R
being a commutative and unitary ring, determines this structure in the
case when R is either a finite field or the ring Zm of integers modulo m,
and describes the group structure on conic sections.

In particular, by [9], the group S1(R) is cyclic provided R is a field or
the ring Zpk of integers modulo pk for a prime odd number p. Further, in
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[9, p. 54] the author has stated: The case p = 2 is particularly interesting
(or nasty, depending on your point of view [oder lästig, je nachdem, wie
man es sieht]).

The aim of Section 1 is to simplify proofs of some results from [9],
present their generalizations and state in Theorem 2.5:
If p is a prime and k ≥ 1 then

S1(Zpk) ∼=


Z+
pk−1(p−1), if p ≡ 1 (mod 4);

Z+
pk−1(p+1)

, if p ≡ 3 (mod 4);

Z+
2 , if k = 1;

Z+
2 ⊕ Z+

22 ⊕ Z+
2k−2 , if k ≥ 2.

The paper [8] grew out of our attempt to describe all polynomial self-
maps of the real and complex circle as well. Then, some results from
[11, 14, 15] on spheres and their polynomial maps into spheres over any
field has been transfered. In virtue of Wood [14] (see also [5, Chapter
13]) a necessary condition for the existence of a non-constant polynomial
map Sm → Sn of spheres for m ≥ n is that 2k+1 > m ≥ n ≥ 2k for
some k ≥ 0. It was shown in [15] that from the homotopy point of view
nothing is lost by complexifying the problem of which homotopy classes
of maps of spheres contain a polynomial representative. Furthermore in
virtue of [7] any complex polynomial self-map of S2(C) yields a regular
self-map of the sphere S2 in a canonical way. Then Loday [11] using
algebraic and topological K-theory proved some results on polynomials
maps into Sn. For instance, every polynomial map from the torus Tn to
Sn is null-homotopic if n > 1. For n even those results were extended in
[3, 4] to regular and then in [5] to polynomial maps Sn1 ×· · ·×Snk → Sn
with n = n1 + · · ·+ nk odd. Certainly, polynomial maps Sm1(R)× · · · ×
Smk(R) → Tn(R) are worth to be studied from the algebraic point of
view for any field R. We made use of the abelian group structure on
the sphere S1(R) to show in [8, Corollary 2.11] that for any polynomial
self-map f : S1(R) → S1(R) there are α ∈ S1(R) and an integer n such
that f(z) = αzn for any z ∈ S1(R) provided the field R is infinite. All
polynomial maps Sm1(R) × · · · × Smk(R) → Tn(R) are listed in [8] for
any infinite field R.

Section 2 takes up the systematic study of spheres Sn(R) over a fi-
nite field R and polynomial maps Sm1(R) × · · · × Smk(R) → Sn1(R) ×
· · · × Snl(R) with m1, . . . ,mk, n1, . . . , nl ≥ 0. Theorem 3.2 shows the
cardinality ](Sn(R)) of the n-sphere Sn(R):
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If the characteristic χ(R) 6= 2 then for any number n ≥ 1 it holds:

]Sn(R) =

{
(]R)n − (]R)

n
2 η((−1)

n
2 ), if n is even;

(]R)n − (]R)
n−1
2 η((−1)

n+1
2 ) if n is odd,

where

η(1) = 1 and η(−1) =

 1, if the equation X2 + 1 = 0 has a solution
inR;

−1 otherwise
and Corollary 3.4 asserts that any such any map Sm1(R)×· · ·×Smk(R)→
Sn1(R)× · · · × Snl(R) is a polynomial one.

1. Circles over a finite ring. Let R be a commutative and
unitary ring. The set

S1(R) = {(r0, r1) ∈ R×R; r20 + r21 = 1}

is called the 1-sphere or the circle over R.
Observe that on S1(R) there is an abelian group structure de-

fined by (r0, r1) ◦ (r′0, r
′
1) = (r0r

′
0 − r1r

′
1, r0r

′
1 + r1r

′
0) for any points

(r0, r1), (r′0, r
′
1) ∈ S1(R). Writing SO(2, R) for the group of special or-

thogonal 2× 2-matrices over R, we may easily show

Remark 2.1. (1) For any commutative and unitary ring R there is an
isomorphism of groups

S1(R) ∼= SO(2, R)

determined by the assignment (r0, r1) 7→
(
r0 r1
−r1 r0

)
for (r0, r1) ∈ S1(R).

(2) If R1, R2 are commutative and unitary rings then there is an iso-
morphism of groups S1(R1 ×R2) ∼= S1(R1)× S1(R2).

Next, consider the quotient ringR[i] = R[X]/(X2+1), where i denotes
the class of X in R[X]/(X2 + 1) and write U(R) for the multiplicative
group of R. Let χ(R) denote the characteristic of R. Then, we may state:

Proposition 2.2. F̨or any unitary ring R there is a group monomor-
phism S1(R)→ U(R[i]). Further:
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(1) if χ(R) = 2 then S1(R) = {(1 + r + s, r); r, s ∈ Rwith s2 = 0}
and there is a splitting short exact sequence

0→ R+ → S1(R)→ R̃→ 1,

where R+ is the additive group of R and the group R̃ = {s ∈ R; s2 = 0}
with s1 ◦ s2 = s1 + s2 + s1s2 for s1, s2 ∈ R̃;

(2) if i ∈ R with i2 = −1 then there is an exact sequence of abelian
groups

0→ R0 → S1(R)→ U(R),

where R0 = {r ∈ R; 2r = 0};
(i) if 2 ∈ U(R) then there a group isomorphism

S1(R)
∼=→ U(R);

(ii) if χ(R) = 2 then there is a splitting short exact sequence

0→ R→ S1(R)→ R1 → 1,

where R1 = {r ∈ R; r2 = 1};
(3) if i 6∈ R then there is an exact sequence

1→ S1(R)→ U(R[i])
ρ→ U(R)

of abelian groups, where ρ(r0 + r1i) = r20 + r21 for r0 + r1i ∈ U(R[i]).
Further, if R is a finite field then U(R[i])

ρ→ U(R) is onto.

Proof. Certainly, the map ϕ : S1(R)→ U(R[i]) given by ϕ(r0, r1) =
r0 + r1i for (r0, r1) ∈ S1(R) is a group monomorphism.

(1) Let χ(R) = 2. If r, s ∈ R with s2 = 0 then (1 + r + s, r) ∈ S1(R).
Conversely, if (r0, r1) ∈ S1(R) then r0 = 1 + r1 + (1 + r0 + r1) and
(1 + r0 + r1)2 = 0. Hence, S1(R) = {(1 + r + s, r); r, s ∈ Rwith s2 = 0}.
Further, one can easily see that the map φ : R+ → S1(R) given by φ(r) =
(1+r, r) for r ∈ R is a group monomorphism. Write R̃ = {s ∈ R; s2 = 0}
and s1 ◦ s2 = s1 + s2 + s1s2 for s1, s2 ∈ R̃. Then, (R̃, ◦) is an abelian
group and the map ρ : S1(R) → R̃ given by ρ(1 + r + s, r) = s for
(1 + r + s, r) ∈ S1(R) is an epimorphism. The sequence

0→ R+ φ→ S1(R)
ρ→ R̃→ 0

is exact and the map ρ′ : R̃→ S1(R) given by ρ′(s) = (1 + s, 0) for s ∈ R̃
determines its splitting.
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(2) Write R0 = {r ∈ R; 2r = 0}. Then, the maps

α : R0 → S1(R) and ϕ : S1(R)→ U(R)

given by α(r) = (1+r, r) for r ∈ R0 and ϕ(r0, r1) = r0 +r1i for (r0, r1) ∈
S1(R) are group homomorphisms with Kerα = {0} and Imα = Kerϕ.
Notice that r ∈ U(R) with r+ r−1 = 2s for some s ∈ R implies (s,−(r−
s)i) ∈ S1(R) and ϕ(s,−(r − s)i) = r. Consequently,

Imϕ = {r ∈ U(R); r + r−1 ∈ 2R}.

(i) If 2 ∈ U(R) then R0 = {0} and r + r−1 ∈ Imϕ for r ∈ U(R).
Hence, the map

ψ : U(R)→ S1(R)

given by ψ(r) = (2−1(r−1 + r), 2−1(r−1− r)i) for r ∈ U(R) is the inverse
of the ϕ : S1(R)→ U(R) above.

(ii) If χ(R) = 2 then R0 = R, Imϕ = {r ∈ R; r2 = 1} = R1 and the
short exact sequence

0→ R+ → S1(R)→ R1 → 1

splits as an exact sequence of elementary 2-groups.
(3) Consider the group homomorphism ρ : U(R[i]) → U(R) given by

ρ(r0 + r1i) = r20 + r21 for r0 + r1i ∈ U(R[i]). Then, Kerρ = S1(R) and
consequently we get the required short exact sequence 1 → S1(R) →
U(R[i])→ U(R).

Let now R be a finite field and define the group endomorphism π :
U(R) → U(R) given by π(r) = r2 for r ∈ U(R). If χ(R) = 2 then π is
an automorphism and so U(R[i])

ρ→ U(R) is onto.
Now, suppose that χ(R) 6= 2 and write ]X for the cardinality of a

finite set X. Notice that the group endomorphism U(R) → U(R) given
by r 7→ r2 for r ∈ U(R) leads to kerπ ∼= Z2 and ]{r2; r ∈ U(R)} =
]U(R)

2 . Given r ∈ U(R), we follow [10, Remark 6.25] to consider the sets
A = {r20; r0 ∈ U(R) ∪ {0}} and B = {r − r21; r1 ∈ U(R) ∪ {0}}. Then,
]A = ]B = ]U(R)

2 + 1 and consequently A ∩ B 6= ∅ which implies that
ρ(r0 + r1i) = r.

�

Writing Z+
m for the cyclic group with order m, we deduce (see [9,

Korollar 6]):
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Corollary 2.3. Įf R is a finite field then there is an isomorphism of
groups:

(1) S1(R) ' (Z+
2 )k provided ]R = 2k and χ(R) = 2;

(2) S1(R) '
{

Z+
]R−1, if ]R ≡ 1 (mod 4);

Z+
]R+1, if ]R ≡ 3 (mod 4).

provided χ(R) 6= 2.

Proof. (1) follows directly from Proposition 2.2(2)(ii).
(2) If ]R ≡ 1 (mod 4) then i ∈ R and by Proposition 2.2(2), we get

an isomorphism S1(R) ∼= U(R). Hence, the well-known isomorphism
U(R) ∼= Z+

]R−1 yields S1(R) ∼= Z+
]R−1.

If ]R ≡ 3 ( mod 4) then, by Fermat Theorem on Sums of Two Squares,
i 6∈ R. Then, by Proposition 2.2(3), there is an exact sequence 1 →
S1(R) → U(R[i]) → U(R) → 1 of abelian groups. Because R and R[i]
are finite fields, there are isomorphisms U(R) ∼= Z]R−1 and U(R[i]) ∼=
Z(]R)2−1. Consequently, we deduce S1(R) ∼= Z+

]R+1 and the proof is
complete.

�

Let now R = Zm, the ring of integers modulo m. The primary
factorization m = pk11 · · · p

kt
t yields an isomorphism of rings Zm

∼=→
Z
p
k1
1
× · · · × Z

p
kt
t
. Because S1(−) is a product preserving functor from

unitary rings to abelian groups, we get an isomorphism

S1(Zm)
∼=→ S1(Z

p
k1
1

)× · · · × S1(Z
p
kt
t

)

and ]S1(Zm) = ]S1(Z
p
k1
1

) · · · ]S1(Z
p
kt
t

). Hence, the problem of determin-
ing the structure of S1(Zm) and ]S1(Zn) has been reduced to the case of
prime powers pk. By the claim in [9, p. 54], the group S1(Zpk) is cyclic
provided p is an odd prime. A proof of that is presented below.

Lemma 2.4. Įf p is a prime and k ≥ 1 then

U(Zpk [i]) ∼=


Z+
pk−1(p−1) ⊕ Z+

pk−1(p−1), if p ≡ 1 (mod 4);

Z+
pk−1 ⊕ Z+

pk−1(p2−1), if p ≡ 3 (mod 4);

Z+
2 , if p = 2 and k = 1;

Z+
22 ⊕ Z+

2k−2 ⊕ Z+
2k−1 , if p = 2 and k ≥ 2.

Proof. First, let p be an odd prime. Recall the well-known the
isomorphism U(Zpk) ∼= ((p) + 1) ⊕ U(Zp) ∼= Z+

pk−1(p−1) stated in [13,
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Theorem 6.7], where (p) is the nilpotent principal ideal of Zpk generated
by p.

Let p ≡ 1 (mod 4) and i ∈ U(Zpk) with order four. Because i ∈ Zp−1
and −1 is the only element in Zp−1 with order two, we deduce that
i2 = −1. Consequently, Zpk [i] ∼= Zpk × Zpk and U(Zpk [i]) ∼= U(Zpk) ×
U(Zpk) ∼= Z+

pk(p−1) ⊕ Z+
pk(p−1).

If p ≡ 3 ( mod 4) then, by Fermat’s Theorem on Sums of Two Squares,
i 6∈ Zpk . Given r0 + r1i ∈ Zpk [i], we see that r0 + r1i ∈ U(Zpk [i]) if and
only if r20 +r21 ∈ U(Zpk) or equivalently, if and only if r0 ∈ U(Zpk) or r1 ∈
U(Zpk). Hence, Zpk [i] is a p-primary ring with the nilpotent principal
prime ideal (p) and ](p) = p2(k−1). Then, the residue filed Zpk [i]/(p) ∼=
Zp2 and in view of [2, Proposition 1], we deduce that U(Zpk [i]) ∼= ((p) +
1) ⊕ U(Zp2). Following the proof of [13, Theorem 6.7], we get (1 +

p)p
l−2

, (1+pi)p
l−2 6≡ 1 ( mod pl) and (1+p)p

l−1

, (1+pi)p
l−1 ≡ 1 ( mod pl)

for l ≥ 2. Because
〈
1+p

〉
∩
〈
1+pi

〉
= {1}, we deduce a group isomorphism

((p)+1) ∼=
〈
1+p

〉
⊕
〈
1+pi

〉 ∼= Z+
pk−1 ⊕Z+

pk−1 . Consequently, we get that
U(Zpk [i]) ∼= Z+

pk−1 ⊕ Z+
pk−1(p2−1).

Let now p = 2. First, it is obvious that U(Z2[i]) = {1, i} ∼= Z2.
Hence, we can assume that k ≥ 2. Recall form [13, Theorem 5.44] that
U(Z2k) ∼=

〈
5
〉
⊕
〈
− 1
〉 ∼= Z+

2k−2 ⊕ Z+
2 for k ≥ 2. Because r0 + r1i ∈

U(Z2k [i]) if any only if r0 is odd and r1 is even or vise versa, we get
]U(Z2k [i]) = 22k−1. Further, (1 + 2i)2

l−2 ≡ 2l−1 + 1 + 2l−1i (mod 2l)
for l > 2. This implies that 2k−1 is the order of 1 + 2i. Next, the
intersection of any two of the subgroups

〈
i
〉
,
〈
5
〉
and

〈
1 + 2i

〉
is the

trivial group and ]U(Z2k [i]) = 22k−1. Thus, we deduce that U(Z2k [i]) ∼=〈
i
〉
⊕
〈
5
〉
⊕
〈
1 + 2i

〉 ∼= Z22 ⊕ Z2k−2 ⊕ Z2k−1 for k ≥ 2 and the proof is
complete.

�

Now, we are in a position to show the main result of this Section:

Theorem 2.5. Įf p is a prime and k ≥ 1 then

S1(Zpk) ∼=


Z+
pk−1(p−1), if p ≡ 1 (mod 4);

Z+
pk−1(p+1)

, if p ≡ 3 (mod 4);

Z+
2 , if k = 1;

Z+
2 ⊕ Z+

22 ⊕ Z+
2k−2 , if k ≥ 2.
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Proof. (1) If p ≡ 1 (mod 4) then i ∈ Zpk . Because 2 ∈ U(Zpk), by
Proposition 2.2(2), the map ρ : S1(Zpk) → U(Zpk) given by ρ(r0, r1) =
r0 + r1i for (r0, r1) ∈ S1(Zpk) is an isomorphism of groups. Thus,

S1(Zpk) ∼= U(Zpk) ∼= Z+
pk−1(p−1).

(2) If p ≡ 3 (mod 4) then i 6∈ Zpk . Further, U(Zpk) ∼= Z+
pk−1(p−1)

and, in view of Lemma 2.4, it holds U(Zpk [i]) ∼= Z+
pk−1 ⊕ Z+

pk−1(p2−1).
Next, consider the map ρ : U(Zpk [i]) → U(Zpk) defined in Propo-
sition 2.2(2). Then, the restriction ρ|Z+

pk−1

is an isomorphism and,

in view of Proposition 2.2(3), the restriction ρ|Z+

p2−1

is onto. Conse-

quently, ρ : U(Zpk [i]) → U(Zpk) is onto and the short exact sequence
1 → S1(Zpk) → U(Zpk [i])

ρ→ U(Zpk) → 1 from Proposition 2.2(3) yields
S1(Zpk) ∼= Z+

pk−1(p+1)
.

(3) For the group homomorphism ρ : U(Z2k [i]) → U(Z2k) given by
ρ(r0 + r1i) = r20 + r21 for r0 + r1i ∈ U(Z2k [i]), by Proposition 2.2(3), we
get the short exact sequence

1→ S1(Z2k)→ U(Z2k [i])
ρ→ U(Z2k)

of abelian groups with k ≥ 1.
Because U(Z2) = {1}, Lemma 2.4 yields that S1(Z2) ∼= U(Z2[i]) ∼=

Z+
2 . If k ≥ 2 then by the proof of Lemma 2.4, we have that U(Z2k [i]) ∼=〈
i
〉
⊕
〈
5
〉
⊕
〈
1 + 2i

〉 ∼= Z22 ⊕ Z2k−2 ⊕ Z2k−1 . Because ρ(i) = 1, ρ(5) = 52,
ρ(1 + 2i) = 5 and U(Z2k) ∼=

〈
5
〉
⊕
〈
− 1
〉 ∼= Z+

2k−2 ⊕ Z+
2 , we deduce that

Im ρ =
〈
5
〉 ∼= Z+

2k−2 . Consequently, the exact sequence

1→ S1(Z2k)→ U(Z2k [i])
ρ→ Z2k−2 → 1

yields S1(Z2k) ∼= Z+
2 ⊕ Z+

22 ⊕ Z+
2k−2 for k ≥ 2 and the proof is complete.

�

2. Spheres over finite fields and their polynomial
maps. Let R be a commutative and unitary ring. Then, we notice:
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Remark 3.1. For any commutative and unitary ring R there is a bijec-
tion S3(R) ∼= SU(R[i]) determined by the assignment

(r0, r1, r2, r3) 7→
(
r0 + r1i r2 + r3i
−r2 + r3i r0 − r1i

)
for (r0, r1, r2, r3) ∈ S3(R). Consequently, S3(R) inherits the group struc-
ture from SU(R[i]). Notice that S2(R) ∼= {A ∈ SU(R[i]); tr (A) = 0}
provided 2R = 0, where tr : SU(R[i])→ R[i] is the trace function.

Notice that there is an embedding Rn0 ↪→ Sn(R) given by

(r0, . . . , rn−1) 7→ (1 + r0 + · · ·+ rn−1, r0, . . . , rn−1)

for (r0, . . . , rn−1) ∈ Rn0 , where R0 = {r ∈ R; 2r = 0}. In particular,
Rn ↪→ Sn(R) provided χ(R) = 2. If R is a field with χ(R) = 2 then
certainly there is a bijection Sn(R) ∼= Rn and ]Sn(R) = (]R)n.

Now, suppose that R is a finite field with χ(R) 6= 2. Basing on [10,
Theorems 6.26 and 6.27], we obtain:

Theorem 3.2. Įf R is a finite field with χ(R) 6= 2 then for any number
n ≥ 1 it holds:

]Sn(R) =

{
(]R)n + (]R)

n
2 η((−1)

n
2 ), if n is even;

(]R)n − (]R)
n−1
2 η((−1)

n+1
2 ), if n is odd,

where η(1) = 1 and η(−1) =


1, if the equation x2 + 1 = 0

has a solution in R;

−1, otherwise.

Let ]R = pk for an odd prime p. Notice that η(−1) = 1 if and only if
p ≡ 1 (mod 4) or k is an even number.

To examine polynomial maps P = (P0, . . . , Pn) : Sm(R) → Sn(R) in
that case a general result would be useful.

Proposition 3.3. L̨et R be a field and S ⊆ Rm+1, T ⊆ Rn+1 finite
subsets. Then any map f : S → T is a polynomial one for m,n ≥ 0.

Proof. Given a finite subset S ⊆ Rm+1 there is obviously a finite
subset S0 = {r1, . . . , rk} ⊆ R with S ⊆ Sm+1

0 . It is well-know that there
are interpolation polynomials Pr1(X), . . . , Prk(X) ∈ R[X] with Pri(xj) =
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δrirj for i, j = 0, . . . , k. Next for any s = (ri0 , . . . , rim) ∈ Sm+1
0 consider

the polynomial

Ps(X0, . . . , Xm) = Pri0 (X0) · · ·Prim (Xm) ∈ R[X0, . . . , Xm].

Then Ps(s′) = δss′ for any s, s′ ∈ Sm+1
0 .

Now, given a map f : S → T write f(s) = (f0(s), . . . , fn(s)) for
any point s ∈ S. Then, the polynomial map S → T determined by
polynomials:

Q0(X0, . . . , Xm) =
∑
s∈S

f0(s)Ps(X0, . . . , Xm),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Qn(X0, . . . , Xm) =

∑
s∈S

fn(s)Ps(X0, . . . , Xm)

coincides with f : S → T and the proof is complete. �

In particular, the following conclusion follows.

Corollary 3.4. L̨et R be a finite field. Then any map Sm1(R) ×
· · · × Smk(R) → Sn1(R) × · · · × Snl(R) is a polynomial one for
m1, . . . ,mk, n1, . . . , nl ≥ 0.

Let EndR(R[X1, . . . , Xn]) be the set of all R-homomorphisms
of R[X1, . . . , Xn] and AutR(R[X1, . . . , Xn]) the group of all its R-
automorphisms. Write T (R,n) for the tame polynomial auto-
morphism subgroup of AutR(R[X1, . . . , Xn]) generated by (X1 +
F (X2, . . . , Xn), X2, . . . , Xn) for all F (X2, . . . , Xn) ∈ R[X2, . . . , Xn],
P(Rn) for the set of all self-maps of Rn and B(Rn) the group of all
bijections of Rn. Then, we get an obvious map

E : EndR(R[X1, . . . , Xn]) −→ P(Rn).

Theorem 3.5. ([12]) L̨et R be a finite field and Fp the simple field,
where p is a prime. Then:

(1) ]E(T (R, 1)) = ]B(R)/]R − 2)!, so E(T (R, 1)) = B(R) only if R =
F2, F3;

(2) if n ≥ 2 and χ(R) 6= 2 or R = F2 then E(T (R,n)) = B(Rn);
(3) if n ≥ 2, χ(R) = 2 and ]R > 2 then ]E(T (R,n) = ]B(Rn)/2. In

fact,
E(T (R,n)) is the alternating subgroup A(Rn) of the group B(Rn).
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Now, any bijection of Sn1(R) × · · · × Snl(R) yields an bijection of
Rm1+···+mk+k. Furthermore, for χ(R) = 2 there is an obvious polynomial
isomorphism Sn(R)→ Rn. Consequently, Theorem 3.5 leads to:

Corollary 3.6. L̨et R be a finite field. Then:
(1) if χ(R) 6= 2 or R = F2 then any bijection of B(Sn1(R) × · · · ×

Snl(R)) is an invertible polynomial map;
(2) if ]R > 2 and χ(R) = 2 then any bijection of A(Sn1(R) × · · · ×

Snl(R)) is an invertible polynomial map.

Let R be a commutative and unitary ring. Then, we could consider
the non-commutative and unitary ring R{i, j, k} with i2 = j2 = k2 =
−1, ij = k, jk = i, ki = j. Given q = r0 + r1i + r2j + r3k ∈ R{i, j, k},
we write |q|2 = r20 + r21 + r22 + r23 and q̄ = r0 − r1i − r2j − r3k. Then,
qq̄ = |q|2, |q1q2|2 = |q1|2|q2|2 for q, q1, q2 ∈ R{i, j, k} and

S3(R) ∼= {q ∈ R{i, j, k}; |q|2 = 1}.

Hence, S3(R) inherits the group structure which coincides with the pre-
vious one. Further, we have a group monomorphism

ϕ : S3(R)→ U(R{i, j, k})

given by ϕ(r0, r1, r2, r3) = r0 + r1i+ r2j + r3k for (r0, r1, r2, r3) ∈ S3(R).
Notice that r0 + r1i + r2j + r3k ∈ U(R{i, j, k}) if and only if r20 + r21 +
r22 + r23 ∈ U(R). Hence, the map

ρ : U(R{i, j, k})→ U(R)

given by ρ(r0+r1i+r2j+r3k) = r20 +r21 +r22 +r23 for r0+r1i+r2j+r3k ∈
U(R{i, j, k}) is a well-defined group homomorphism and the sequence

1→ S3(R)
ϕ→ U(R{i, j, k}) ρ→ U(R)

is exact.
Next, we consider the non-associative and unitary ring

R{e1, e2, e3, e4, e5, e6, e7}, where products eset are defined by
the Cayley algebra rules for s, t = 1, 2, 3, 4, 5, 6, 7. Given c =
r0+r1e1+r2e2+r3e3+r4e4+r5e5+r6e6+r7e7 ∈ R{e1, e2, e3, e4, e5, e6, e7},
write |c|2 = r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27. Then, |c1c2|2 = |c1|2|c2|2
for c1, c2 ∈ R{e1, e2, e3, e4, e5, e6, e7} and

S7(R) ∼= {c ∈ R{e1, e2, e3, e4, e5, e6, e7}; |c|2 = 1}
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inherits a non-associative group structure.
Notice that we have a non-associative group monomorphism

ϕ : S7(R)→ U(R{e1, e2, e3, e4, e5, e6, e7})

given by ϕ(r0, r1, r2, r3, r4, r5, r6, r7) = r0 + r1e1 + r2e2 + r3e3 + r4e4 +
r5e5+r6e6+r7e7 for (r0, r1, r2, r3, r4, r5, r6, r7) ∈ S7(R). Notice that r0+
r1e1+r2e2+r3e3+r4e4+r5e5+r6e6+r7e7 ∈ U(R{e1, e2, e3, e4, e5, e6, e7})
if and only if r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27 ∈ U(R). Hence, the
map

ρ : U(R{e1, e2, e3, e4, e5, e6, e7})→ U(R)

given by ρ(r0 + r1e1 + r2e2 + r3e3 + r4e4 + r5e5 + r6e6 + r7e7) = r20 +
r21 + r22 + r23 + r24 + r25 + r26 + r27 for r0 + r1e1 + r2e2 + r3e3 + r4e4 +
r5e5 + r6e6 + r7e7 ∈ U(R{e1, e2, e3, e4, e5, e6, e7}) is a well-defined non-
associative group homomorphism and the sequence

1→ S7(R)
ϕ→ U(R{e1, e2, e3, e4, e5, e6, e7})

ρ→ U(R)

is exact.
If R1, R2 are commutative and unitary rings then there is a bijection

Sn(R1×R2) ∼= Sn(R1)×Sn(R2) for n ≥ 0. Because the primary factoriza-
tionm = pk11 · · · p

kt
t yields an isomorphism of rings Zm

∼=→ Z
p
k1
1
×· · ·×Z

p
kt
t
,

we derive a bijection

Sn(Zm) ∼= Sn(Z
p
k1
1

)× · · · × Sn(Z
p
kt
t

).

Thus, the study of Sn(Zm) reduces to Sn(Zpk) for any prime p and k ≥ 1.

Proposition 3.7. Įf p is a prime and k ≥ 1 then:

(1) ]S3(Zpk) =

{
p3k−2(p2 − 1), if p is an odd prime;
23k, if p = 2;

(2) ]S7(Zpk) =

{
p7k−4(p2 − 1)(p2 + 1), if p is an odd prime;
27k, if p = 2.

Proof. (1) First, notice that r0 + r1i+ r2j + r3k 6∈ U(Zpk{i, j, k}) if
only if r20 + r21 + r22 + r23 ≡ 0 (mod p) or equivalently, r20 + r21 + r22 + r23 = 0
in the field Zp.

If p is an odd prime then, in view of [10, Theorem 6.26], the equation
r20 + r21 + r22 + r23 = 0 has p3 + (p − 1)p solutions in Zp. Consequently,
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the equation r20 + r21 + r22 + r23 ≡ 0 (mod p) has p4(k−1)(p3 + (p − 1)p) =
p4k−3(p2 + p − 1) solutions in Zpk . This implies that ]U(Zpk{i, j, k}) =
p4k − p4k−3(p2 + p− 1) = p4k−3(p2 − 1)(p− 1).

If p = 2 then the equation r20 + r21 + r22 + r23 = 0 has 23 solutions
in Z2. Consequently, the equation r20 + r21 + r22 + r23 ≡ 0 (mod 2) has
24(k−1)23 = 24k−1 solutions in Z2k . This implies that ]U(Z2k{i, j, k}) =
24k − 24k−1 = 24k−1.

Next, by Lagrange Four-Square Theorem, the map ρ :
U(Zpk{i, j, k}) → U(Zpk) is onto for any prime p and k ≥ 1. Hence,
the short exact sequence

1→ S3(Zpk)
ϕ→ U(Zpk{i, j, k})

ρ→ U(Zpk)→ 1

and U(Zpk) ∼=


Zpk−1(p−1), if p is an odd prime;
{1}, if p = 2 and k = 1;
Z2 ⊕ Z2k−2 , if p = 2 and k ≥ 2

lead to (1).
(2) If p is an odd prime then, in view of [10, Theorem 6.26], the

equation r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27 = 0 has p7 + (p − 1)p3

solutions in Zp. Consequently, the equation r20 + r21 + r22 + r23 + r24 +
r25 + r26 + r27 ≡ 0 (mod p) has p8(k−1)(p7 + (p− 1)p3) = p8k−5(p4 + p− 1)
solutions in Zpk . This implies that ]U(Zpk{e1, e2, e3, e4, e5, e6, e7}) =
p8k − p8k−5(p4 + p− 1) = p8k−5(p2 − 1)(p− 1)(p2 + 1).

If p = 2 then the equation r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27 = 0 has
27 solutions in Z2. Consequently, the equation r20 + r21 + r22 + r23 + r24 +
r25 + r26 + r27 ≡ 0 (mod 2) has 28(k−1)27 = 28k−1 solutions in Z2k . This
implies that ]U(Z2k{e1, e2, e3, e4, e5, e6, e7}) = 28k − 28k−1 = 28k−1.

Then, we follow mutatis mutandis the procedure presented in (1) and
the proof is completed. �

Now, for z = r0 + r1i ∈ R[i], we write |z|2 = r20 + r21 and z̄ = r0 − r1i.
Then, zz̄ = |z|2, z ∈ U(R[i]) if and only if |z|2 ∈ U(R) and

S3(R) ∼= {(z0, z1) ∈ R[i]×R[i]; |z0|2 + |z1|2 = 1}.

Notice that there is an action

◦ : S1(R)× S3(R) −→ S3(R)

such that λ ◦ (z0, z1) = (λz0, λz1) for λ ∈ S1(R) and (z0, z1) ∈ S3(R).
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Next, q ∈ U(R{i, j, k}) if and only if |q|2 ∈ U(R) for q ∈ R{i, j, k},
and

S7(R) ∼= {(q0, q1) ∈ R{i, j, k} ×R{i, j, k}; |q0|2 + |q1|2 = 1}.

Further, there is an action

◦ : S3(R)× S7(R) −→ S7(R)

such that λ ◦ (q0, q1) = (λq0, λq1) for λ ∈ S3(R) and (q0, q1) ∈ S7(R).
Now, we mimic the Hopf maps h : S3 −→ S2 and H : S7 −→ S4 to

define
h(R) : S3(R) −→ S2(R)

by h(R)(z0, z1) = (|z0|2 − |z1|2, 2z0z̄1) for (z0, z1) ∈ S3(R) and

H(R) : S7(R) −→ S4(R)

by H(R)(q0, q1) = (|q0|2 − |q1|2, 2q0q̄1) for (q0, q1) ∈ S7(R).

Proposition 3.8. L̨et R be a local commutative and unitary ring such
that 2 is not a zero divisor of R. Then:

(1) h(R)−1(h(R)(z0, z1)) = {(λz0, λz1); for λ ∈ S1(R)} ∼= S1(R)

for any (z0, z1) ∈ S3(R);

(2) H(R)−1(h(R)(q0, q1)) = {(λq0, λq1); for λ ∈ S3(R)} ∼= S3(R)

for any (q0, q1) ∈ S7(R).

Proof. (1) Let (z0, z1) ∈ S3(R). Then, certainly it holds
{(λz0, λz1); forλ ∈ S1(R)} ⊆ h(R)−1(h(R)(z0, z1)).

Suppose that h(R)(w0, w1) = h(R)(z0, z1) for some (w0, w1) ∈ S3.
Then, |w0|2 − |w1|2 = |z0|2 − |z1|2 and 2w0w̄1 = 2z0z̄1. Because |w0|2 +
|w1|2 = 1 = |z0|2 + |z1|2 and 2 ∈ R is not a zero divisor, we get |w0|2 =
|z0|2, |w1|2 = |z1|2 and w0w̄1 = z0z̄1. Further, R is a local ring, so
|w0|2 + |w1|2 = 1 = |z0|2 + |z1|2 implies |w0|2 ∈ U(R) or |w1|2 ∈ U(R)
and |z0|2 ∈ U(R) or |z1|2 ∈ U(R). Hence, w0 ∈ U(R) or w1 ∈ U(R) and
z0 ∈ U(R) or z1 ∈ U(R).

If z0 ∈ U(R) then we set λ = z−10 w0; if z1 ∈ U(R) then we set λ =
z−11 w1. Thus, λ ∈ S1(R) and (w0, w1) = (λz0, λz1). Because (z0, z1) ∈
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S3(R) implies z0 ∈ U(R) or z1 ∈ U(R), we get h(R)−1(h(R)(z0, z1)) ∼=
S1(R).

(2) Given (q0, q1) ∈ S7(R), we follow mutatis mutandis (1) to complete
the proof.

�
By [1, Theorem 8.7], any commutative Artinian and unitary ring (in

particular, any finite commutative and unitary ring) is a finite prod-
uct of commutative Artinian local rings. Further, Sn(R1 × R2) ∼=
Sn(R1)×Sn(R2) for any commutative and unitary rings R1, R2 and n ≥ 0.
Consequently, in view of Proposition 3.8, for a commutative Artinian and
unitary ring R, and such that 2 is not a zero divisor in R, we get embed-
dings

h̄(R) : S3(R)/S1(R) −→ S2(R) and H̄(R) : S7(R)/S3(R) −→ S4(R).

In particular:
if R is a finite field with χ(R) 6= 2 then Corollary 2.3 and Theorem 3.2

imply that h̄(R) : S3(R)/S1(R) −→ S2(R) and H̄(R) : S7(R)/S3(R) −→
S4(R) are bijections;

if R = Zpk for an odd prime p and k ≥ 1 then Theorem 2.5 and
Proposition 3.7 lead to:

]S2(Zpk) ≥
{
p3k−2(p+ 1), if p ≡ 1 (mod 4);
p3k−2(p− 1), if p ≡ 3 (mod 4)

and
]S4(Zpk) ≥ p4k−2(p2 + 1).

Remark 3.9. Because

S15(R) ∼= {(c0, c1) ∈ R{e1, e2, e3, e4, e5, e6, e7}×R{e1, e2, e3, e4, e5, e6, e7};

|c0|2 + |c1|2 = 1},
we make use the Hopf map H : S15 → S8 to consider H(R) : S15(R)→

S8(R) for a commutative and unitary ring R, and state a result as in
Proposition 3.8 as well.

We close the paper with:

Conjecture 3.10. If p is an odd prime and k ≥ 1 then:

(1) ]S2(Zpk) =

{
p3k−2(p+ 1), if p ≡ 1 (mod 4);
p3k−2(p− 1), if p ≡ 3 (mod 4);

(2) ]S4(Zpk) = p4k−2(p2 + 1).
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and

Problem 3.11. Let p be an odd prime and k ≥ 1. Find:
(1) ](Sn(Zpk)) for n > 4 with n 6= 7;
(2) the group structure of S3(Zpk).
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