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B. Balcerzak, A. Pierzchalsk:

Derivatives of skew-symmetric and
symmetric vector-valued tensors

Second order elliptic operator of Laplace type on bundles of wector-
valued tensors on a Lie algebroid are introduced and investigated. The
Weitzenbdeck type formulas in the case of skew-symmetric and symmetric
tensors are derived.

1. INTRODUCTION

A Lie algebroid over a manifold M is a vector bundle A over M with a homomorphism
of vector bundles g4, : A — T'M called an anchor, and a real Lie algebra structure
(T'(A), [, ]) such that [a, fb] = fla,b] + 04 (a) (f)-bforalla,b e T (4), f € C®(M). If
the anchor is constant rank [surjective] we say that the Lie algebroid is regular [transitive].
Any smooth manifold M defines a Lie algebroid, where A = T'M with the identity anchor
and the natural Lie algebra of vector fields on M. Other examples of Lie algebroids
are: Lie algebras, integrable distributions (in particular foliations), cotangent bundles of
Poisson manifolds, Lie algebroids of principal bundles.

For more complete treatment of the category of Lie algebroids and its connections we
refer to: [9], [6], [10], [7], [1].

This article is an extension of our paper [3] where generalized gradients in the sense of
Stein and Weiss on Lie algebroids were introduced and investigated. Stein-Weiss gradi-
ents are irreducible (with respect to the action of the orthogonal group) summands of a
covariant derivative (cf. [14]). The exterior derivative on skew-symmetric forms and its
coderivative, the Ahlfors operator ([13]) and in particular the Cauchy-Riemann operator
are the examples. A connection in a Lie algebroid A has a natural extension to the first
order linear operator

V(A A — Ao AP AY.
The last bundle has the following splitting onto three irreducible summands:
P(A @ N A7) = PN A @ PN A @ PN A7)

(cf. [3]). So, generalized gradients in this case are compositions of V with the projections
defined by the splitting. Here, we are going to focus on two gradients: exterior derivative
d* and its conjugate d** acting on skew-symmetric tensors and being—up to multiplicative
constants—compositions of V with the projections on the first and on the third summand
respectively. In the case of the bundle of symmetric forms an analogous splitting leads
to their symmetric counterparts d®, d** acting on symmetric tensors. In the both cases a
proper composition, namely
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AC=d%* d% 4% de*

in the first case and

AS — ds*dS . deS*
in the other, lead to important second order differential operators. Both of them are
elliptic and, like the Bochner Laplacian V*V, are of metric symbol (see sections 3 and 4).
As a consequence we derive Weitzenbock type formulas in each case:

A=V'VERFT -M

(cf. theorems 3 and 8). The formulas describe exact relations of A to the Bochner
Laplacian. The relations depends explicitly on three indicators of the connection: its
curvature (the operator R), its torsion (the operator 7)) and non-compatibility of the
connection and the metric (the operator M). It is important that the two second order
linear elliptic operators differ practically by a tensor. In this context deriving its explicit
shape seems to be essential.

In classical differential geometry the formula enables deriving many classical results
establishing the relation between the topological structure of an algebroid and its geom-
etry. By the standard Bochner technique, from the Weitzenbock formula, one can get
then information on existence or nonexistence of some important deformations like iso-
metric, projective, conformal (cf. [15] by K. Yano). One can also get some information
on cohomologies (Betti numbers, [16]) or on lower bounds for spectrum of A (cf. [5]).
Many possible applications of Weitzenbock types formulas can be found in the paper [4]
by J.-P. Bourguignon.

It seems to be interesting that the two quiet antipodal cases: the skew-symmetric and
the symmetric one behave so similar. To stress this harmony we apply exactly the same
arrangement of the material in the both cases. In the case of a general Lie algebroid there
is no equivalent of global (integral) scalar product even if the algebroid bundle carries a
Riemannian structure. The adjoint operators are then defined here as the negative traces
of suitable parts of the covariant derivative. They coincide then in the particular case of
the algebroid of the tangent bundle of a compact Riemannian manifold with the operators
adjoint with respect to global (integral) scalar product. In contrast to [3] we consider here
the tensors (forms) with values in a given vector bundle. This bundle needs not to have
any additional structure like algebraic or metric. It is equipped with a connection only.

2. THE EXTERIOR COVARIANT DERIVATIVE FOR AN ARBITRARY CONNECTION

Let (A, 04,[,]) be a Lie algebroid over a manifold M and let E be a vector bundle
over M. Let o (A,E) = @,., " (A, E), where &/* (A, E) = I'(\* A* @ E), be the
€ (M)-module of skew-symmetric forms on the Lie algebroid A of values in the vector
bundle E. & (A, E) is the module over the ring C*° (M) and the module over the algebra
o (A) = o (A, M x R) with the multiplication defined in the following way:

AP (A M xR) x (A E) — " (AE),
(WAm o, tpg) = 5 sgnow (@51), -+ Bow) 1 (Aope1)s - Coora)) -
oeS(pg
where S (p, q) is the set of (p, ¢)-shuffles.
Let
V:A— A(E)
be an A-connection in F, i.e. a homomorphism of vector bundles A and A (E), which
commutes with anchors, and where A (E) is the Lie algebroid of E. We recall (cf. [9])
that the module CDO (E) of sections of A (FE) is the space of all covariant differential
operators in F, i.e. R-linear operators £ : I' (E) — I' (E) such that there is X, € X (M)
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satisfying £ (fe) = fl(e) + X, (f)e for all f € C®°(M) and e € I' (E). V defines a
C> (M)-linear operator

V:TI(A) — CDO(E)
of modules of sections which will be denoted also by V and also called an A-connection.
One can observe that

Sec 04y 0 V = Sec gy,
where Sec 0 457 and Sec g4 are morphisms of C** (M )-modules determined by the anchor
04(m) In the Lie algebroid A (E) and g, respectively. The 2-form RY € /2 (A, End(E))
defined by

RY (a,b) = V40V, — V40V, — Viuy
is called the curvature of the A-connection V. We say that V is flat if RY = 0.
Recall that the exterior derivative d¥ : &% (A, E) — /"1 (A, E) determined by V is

defined by

k+1

@D (@) (@) = 2 ()7 0 )
FE N n ool o B k).

dV is a first order differential operator giving a cohomology space if V is flat. In particular,
if V is the anchor considered as an A-connection in the vector bundle M x R, d¥V = d24
gives the cohomology of the Lie algebroid A (cf. [11]).

Let VA be an A-connection in A. By a torsion of V* we mean the 2-form T4 €
? (A, A) given by

T (a,b) = V20— Via — [a,b], a,be ' (A).
k
Denote the vector bundle ® A* by A*®F and ® A* = @k>0 A*®k by A*®. V¥ and VA
induce an A-connection -
V:I'(A) — CDO (A** @ E)
in the vector bundle A*® ® E by

(VaQ) (a1, ap) = Vi (C(ar, - 0p)) =

e

1<(a17~'-7vg‘ajvv~-7ap)~,

J
a,ay,...,a, € I'(A), (e ' (A**PQE).
The connection V determines the differential operator

Vil (A @ E) — [ (A" @ B)
given by
(2.2) (VQ) (ag, ay, ..., ar) = (Vo) (a1, ..., ax)

for (e I'(A**P Q E), a; € I' (A).
Let a € I" (A). The substitution operator

lg - F(A*®®E) —>F(A*®®E)
on I' (A*® ® E) is defined by
(%C) (a17 ey ap*l) = C ((17 A1y .-ny apfl)

forall (e I'(A*? Q E), ay,...,a,—1 € I' (A).
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Define the second covariant derivative
VP=VoV:I(AQE) — I (A" o E)
and for any a,b € I' (A) the operator Vi,b such that
V2, =iy V2,
ie. szb is a operator of the zero degree given explicitly by
(2.3) Vsl = Va (Vi) = Voul
for (e I'(A*® @ E).
Lemma 1.
Vaip = 1 Va + iyay
for any a,b e I'(A).
Proof. Let € I' (A**? @ E), a4,...,a, € I (A). Then
(Vainl — isVab) (ar, . . ., ap)
= (Vo (@9)) (ar,...,ap) — (Vab) (b,as, ..., ap)

p
= (V. (0(b,ai,...,qa,))) — 29(b7a1,...7Vfas7...7ap)
s=1
—(Va(()(b,al,‘..,ap)))+9(Vﬁb,a1,...,ap)+Zﬁ(b,al,...,v(fas,...,ap)

= (ivg‘be) (a1,...,ap).

O
Lemma 2.
R = Vasl = Vial + Vrand
for(eI'(A*® ®E), a,b e I' (A).
Proof. Use Lemma 1 to obtain:
Vil = Vil = i (Va(VC)) =i (V5 (V)
= (Vaiv — i) (VO) = (Vi — ia) (V)
= Vo(Vi€) = Vga = Vi (Val) + Vyadl
Va(Ve() = V5 (VaC) = VIai¢ = Vospvaa—fas$
= (R = Vraen) ¢
]

The curvature of V : I' (A) — CDO (A*® ® E) depends explicitly on curvatures of
the connections V : I (A) — CDO (E) and V* : I (A) — CDO (A).

Lemma 3. Ifne I' (A*®* @ E), a,b,a1,...,a; € I' (A), then
k

(szn) (a1,...,ax) = sz (m(ar,...,ax)) — > m (al, . ,’RZ:(ZS, . ak> .

s=1
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Proof. Let n € I' (A*** ® E), a,b,a1,...,a € I (A). Then

<7€Zb77) (a1,...,ax)

=
*}:Vh(n(% Vias,... ) + 54;7]((11 ..... Vi (Viay),... a)
+§3;§S77(”17 Vias,...,Via, .,a,k)JréVa(n(al, Vi, ... ap))
_ét;”(ah Viag,..., Vaas ,ak)—ér)(al ..... Vi (Vitas), ... )
*Vllab]](77(‘117--~7ak))+SZ:77(ah...,vﬁ,bﬂasw..,ak).

Now, by collecting similar terms we obtain that

(Rav,bn) (ay, ..., ax)
Vo (Ven) (a1, .. a)) = Vo (Van) (a1, - - ., ax)) = Vi (7 (a1, - .., ar))

k
- ;77 (aly BN V:zq (V?as) - V;‘ (V:‘as) - Vﬁﬁl,b]las, e (lk)

I
=
S

k A
RZh(7](a1,...,ak))— 71n<a17..‘,RZbas,...,ak).

s

Define the A-connection
V:TI'(A) — CDO(ANA*®E)

in the vector bundle A A* ® E by

e

(Van)(a17~--7ap) :va(n(ah-“vap))* n(alr-uvvfajw“vap)»

1

J

a,ay,...,a, € I'(A), n € &/ (A, E). Observe that for all n € & (A, E), f € C* (M) =
(A E), a € T (A) we have

(24) Val(f-n)=f-Van+(04), (f) -,

where g, : I' (A) — CDO (A A* @ (M x R)) is the A-connection in the bundle A A* ®
(M x R) determined by the pair of connections g, and V. So, we see that indeed, for
every a € I' (A), the operator V, has values in CDO (A A* ® E).

Lemma 4. Ifw € & (A, M xR), ve I'(E), a € I' (A), then

(2.5) Volw®v)=(04), (W) @v+w® V,v.
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Proof. Let v € T'(E), a € I'(A). If w € &°(A) = C>® (M), (2.5) is equivalent to (2.4).
Now, let w € &P (A), ay,...,a, € I' (A). Then:

Vo (lw®v)(a,..., ap)

=1
P
= Vo(w(at,...,ap) v) = Y w(a,..., Viaj,...,ap) v
j=1
p
= QA(a)(w(al,...,a,p))-l/fZw(al,...,Vfaj,...,ap)-V+w(a1,...,a},,)~va,(u)
Jj=1

= ((04), W)@V +w®Var)(ay,. .. ap).

Lemma 5. Ifwe o/ (A),ne€ o/ (A E), ac I'(A):
VawAn) =(04), (W) An+wA V.
Proof. Let w € &7 (A), n € #/1(A,E), a € I'(A). Let n be a form 7' ® v for some
7' € /7(A) and v € I' (E). Lemma 4 implies that
Vo (wAn) VaelwAn @v)
= (ea) WAR)@v+(wAr)® V.

Since (p,), is a differentiation in the algebra < (A), from Lemma 4 we obtain:

a

ValwnAn) = ((ea), @) A7 +wA(04), () @v+(wAn)@ Ve
= (0a)g WA @V)+wA((04), )@V +7 @ V,p)
= (0a)s W) AN+wWAV,(n).

Now, define the operator d® : &/* (A, E) — &/*1 (A, E) by
(2.6) d'n=(k+1)- Alt(Vn),
where for any ¢ € ®p A* its alternation Alt ¢ is defined by

Alt¢ =1 > sgno(0().

p!
o€Sp

So,
(2.7) (d%ﬂ(ah.“,akH)::k (=17 (Vayn) (a1, .G @) s

j=1
where n € &% (A,E), ay,...,ar41 € I'(A). A relation between d and d® describes the
following

=

Lemma 6.
d*=d¥ +d"
where dT : P (A, E) — /Pt (A, E) is the operator given by

(@) (a1, apin) = X (1) (T4 (i, 05) s an, o i )

i<j

for anyn € o* (A E), ai,...,ap1 € I' (A).
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Proof. Let n € &/* (A, E), a1, ..., ap41 € I' (A). Therefore
(ALt (V) (ans- . aper)

ptl i1 N
- Z] (=177 (Vao,n) (a1,...@; ..., aps1)
J=
prl i N i1 A ~
= (=17 Vo, (n(ar,... a5 ... ap41)) = D (=1)"' 7 (al,...7va7a,;,...aj...,ap+1>
j=1 i<j ’
—S (=1 (al, sy, Viag, .., apﬂ)
j<i
p+1 i1 N
= Z:l(fl) Va, (n(ax, .. @j...,ap11))
=
+ Z (_1)“'7 n (V;:aj — V:‘Ja“al, NN B ,ap+1>
1<J
pt+1 i1 .
- 21 (—1) Vo, (n(ar,...a5...,ap41))
J=
+3 (=) g ([ai, a;] + T (a;,a4) a1, ... Q... G5 ... LQpi1)
i<y

= (dVn) (ar,.. ., api1) + (d"n) (a1, .-, apin) -

Notice that if V4 is torsion-free, d* = d¥ (cf. also [2]).

3. WEITZENBOCK FORMULA FOR SKEW-SYMMETRIC FORMS

Assume that in the vector bundle A we have a Riemannian metric g. For any k& > 1
and any ¢ € I'(A*®** @ E) define the trace tr{ € I'(A*®*~2® E) as the trace with respect
to the first two arguments by

(31) (tr() (al, ey ak_z) = Z C (8j7 ej, gy ... ,(lk_g)
j=1
where (eq,...,e,) is a local orthonormal frame of A (n = dimA,, * € M). Define

additionally tr¢ = 0 for ¢ € I'(A*®'). One can see that tr do not depend on the choice
of the frame.
By the exterior coderivative d** we mean the operator:

(3.2) d™ = —troV : " (A E) — &* 1 (A E).

Remark 1. In the case of invariantly oriented Lie algebroids we can use the integral fibre
operator and a scalar product on the module & (A) such that d** is formally adjoint to
d™ = d?4 with respect to this product, see [8]. For a general Lie algebroid we do not have
such a scalar product.

Define three differential operators of order zero. The first, a Ricci type operator R :
o/ (A, E) — o (A, E) defined by

n

(33 (R (aem) = X 3 (<) (R ) (epyan,. e an),

j=1s=1
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the operator 7% : & (A, E) — & (A, E) by

B T m) = 5 3 D (Traga) (0 G ),

1s=1

J
and next, the operator M*: &7 (A, E) — & (A, E) by

k
(35) (M) (ar, ) = 32 5 (1) (i ie, +iivn ) (V0) (a8 san),

where n € &% (A, E), ai,...,a, € I' (A), (e1,...,e,) is a local orthonormal frame of A,
RY is the curvature tensor of the connection V. The first one R? is the trace of the
curvature tensor. The next 7 indicates a deviation of the connection from being torsion-
free. The third M® measures a non-compatibility of V with the metric. By Lemma 2,

(3.6) (Rn —T) (as,...,ax)
n k
= LN (VR = VEn) (e an).
j=1s=1

Moreover observe that the operators R*, 7y, M“n can be written in the following forms

(Rn) = Alt (z (Rz,.n)> :
j=1
T = —Alt (JZ%VTVA(%_)W)7
My = —Alt (Z (ivAe7ze]+i€jz'vAeJ)>(vn).
j=1 ’

Define the Laplace operator on differential forms on the Lie algebroid A by
A(L — d(l*da + d(ldﬂ/*'
Recall that for a linear operator P : I' (F)) — I' (F') of order m in a vector bundle F its
symbol at a given point x € M is defined by

op(e,w) = P(f"n) ()
for e € F, and such w € A% that w = (df) (z) for some smooth function f with f (x) =0,
and where € I'(F'), n (z) = e (cf. [12]). The definition is independent either of f nor of

Observe that if A is transitive, A® is a second order strongly elliptic operator with the

metric symbol
2
oae (w,n) = [w[" 1.
Indeed, let 2 € M, w € A%, e € AFAZ® E, and let f € C®° (M), s € I (A"A* @ E) satisfy
f(x) =0, (df) (z) = w, s (x) = e. Then
Oga (w,e) =d* (fs) (z) = (d°f Ns+ fd's) (x) =w Ae.

Moreover, since (9,4) (f) = d*f, the relation (2.4) implies

Ogar (wye) =d™ (fs) (z) = (i(df)js) (x) =i,ze

where § : A* — A is the musical isomorphism determined by the metric g, i.e. for an
1-form & € &% (A, M x R)

g (€5,0) = @& for be I'(A).
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Hence
Ogarga (wy€) =it (WAE) =i gwAe—wAige
and
Ogager (W, €) = w A e.
Consequently,

opa (W, €) = O gargatgoger (W,€) =igwAe=g (wu,wﬁ) e.

Now we write the explicit formulas for the two terms of A in the case of an arbitrary
Lie algebroid A.

Theorem 1.

d¥d%n = — trace V2 + Ej: Alt (ie] (Vz?,(A)’r/))

Jj=1

forne o (AE).

Proof. Let n € &/* (A, E), ay,...,a; € I'(A) and (ey,...,e,) be a local orthonormal
frame of A. By (2.7) and the definition of d** we obtain that

(d**d*n) (a1, ..., ak)

n k
+ 22 >0 (d™n) (Fgﬂll, AV ag,....ak)
j=1s=1

SV (Vo) () = 33 (<1 Ve, (V) (e, 1)

j=1 j=1s=1
n n k
+ 3 (Voaen) (@ sa) + X 30 (<1 (V) (Viesar, o o)
=1 EAE j=1s=1 ’
n k n 3 1 .
+3 3 (Ven) (a1 , Ve aM...‘ak) + > > (=17 (vax 7]) (ej,a1,...as...,ax)
j=1s=1 j=1s=1 !
n k
£33 (1) (V) (g ar, e Vi)

<
I
—
@
I
—
@
S
&
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)3
j=1 j=1s=1
n k
- 4 Zl (_1)5 (v€] (Vasn)) (6J7 ay, Qs 7ak)
j=1s=
n k R
=33 (U (Va) (Vs an,n )
Jj=1s=1

I
7=
™=
T

—_
N

o
—
<
8
=
=

—
o
S
=
IS
B
<
o
IS
M
S
ko
~

<
I
-
@
I
-
@
hiS
&

+
M=
—~
<
<
S
L
=
N
—
)
S
AQ
£
Ko
+
=
T
—
=
—_
<
&
=
=
—~
<
o
)
<
2
S
s
B
RS
N

<.
Il
-

+
=
M=
—

<
o
=
=

—

2
=
<
iy
Q
2
o
kol
~
+
=
™=
—
—
N
]
—~
<
R

(S
=

~~
—
D

<
-

S}
B
uQ
ol
N

<.
I
@
I
—
<.
I
@
I
—

3

(=" (Van) (e]-, ay,...ds..., ijas, o ,ak>

<
I

—
o
I

—

+
o
10

After collecting similar summands and using (2.3) one obtains

— i i (-1)° (VEJ (Va_sn)) (ej,a1,...as ..., ax)

I
-
@
I
-

<
I

—
@«
I

—

n k
= —trace V2 (ar,..., @) + 3 3 (=1)" (v‘g’m_ﬂ) (e,a1,...Ts. .. ay).

Moreover observe that

0=
—
|
—
)
“
|
L
—~
<
k"ﬁl\?
&
=
N2
—
&)
$
IS}
=
S]
5
S
z

<
Il

—
w
I

—

(=17 (ia, (i, V (V) (e a1, ... Ty - .. 1)

Il
MK‘

<
I

—
o
I

—

Il
M=
—

|

—
=
-
|
-
N
=
<.
$
~.
&
—
<.
s
<
—
<
=
=
N
v
—
Q
=
S]
5
QQ
ol
N

@
I
=
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Theorem 2.
(dada*ﬂ) (alv s va'k)
noE s—1 (o2 ~
= =R X (V) ()
j=1s=1
n k 1 =N
=23 (1) (i iy +inivae ) (V) (@1, @),
j=1ls=1
i.e.
dd™y = — S Al (i, (V2. 10)) = S Alt (iga, i, + v iga, ) (V
n ; ( ,( (), 1)) ]; (v&] j 5 v4,])( n)
forne o (AE), a,...,a, € I' (A).
Proof. Let n € &/* (A, E), ay,...,a; € I'(A) and (ey,...,e,) be a local orthonormal

frame of A. By (2.7) and the definition of d** we have

(dada*ﬁ) (0/17 P ,ak)

Il
M=

@
I

Il
|
Y.
M=

[
I
-
<.
I
=

[

|
-
M=

@
I
-
<.
I
=

+
M=
\g|

[

|
« <
[ANg B
~ ~
. @
INNgER
R R
b
¥
b

|

[
I
—
<.
I
=

!
M=
-
\g|

[
I
-
<
I
—
o
S
@

+
Ml
M?T
\g|

I
—
o
I
—
-~
3k
@

(=1)* ™ (Vo (d*n)) (a1, .. .Gy .. ., ax)

(=1 (Va, (ie, (Ve,n))) (a1, .
(="' Vo, (Ve,n) (e, a1, .- @s -,
(=1 (Ve,n) (ejyan,- .., Vitay,...a
(1) (Va, (Ve;n)) (e, an, -
(1) (Ve,n) (Ve an, ... 4,

'(71)371 (Ven) (ej. a1, stah ..

g‘(Jk)

as.‘.,ak)

71\3 L ,ak)
as 7ak)

(71)571 (ijn) (e]-,al,...,vaat,... P
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Now, collecting similar terms one concludes that

(@) (an, .. ax)
k n

= - (=1 (Va, (Veyn)) (ej, a1, .. s - ., ag)

a
i
L
<
T

|
M= |
M=

(-1)*! (Ven) (Vies,an,...as. .., az)

§=1j=1
LA s—1 2 ~
= — 21 Zl (-1) (Vds#}n> (ej,a,...0s. .., ay)
s=17)=
koo s—1 ~
- Zl(fl) (vase]n) (ej,a1,...0s. .., ay)
s=1j=

|
M=
M=

(-1)** (Ven) (Viies, a1, ... Gs ..., az)

w
Il

-
<.

—

I

|
M
™

(—1)* (stﬁn) (ej,a,...0s. .., ay)

«
I
—
.
I
—

I

i
<

1yt (”vA T, z) (V) (ar, .. .Gy .., ax).

as€j

—

O
As a consequence of theorems 1 and 2 we have the following
Theorem 3. (Weitzenbick Formula for Skew-Symmetric Forms)
(3.7) A*=V'V4+R—T*— M*
where R*, T* and M* are the operators defined in (3.3)—(3.5).
Observe that if there exists a local orthonormal frame of sections (ey, ..., e,) with the

property V;: €; |z = 0 at a single point x € M, then M is equal to zero. This condition is
fulfilled in case A = F C T'M is an integrable distribution on M and V* is the Levi-Civita
connection. The assumption of existence of a local orthonormal frame of sections that
have vanishing covariant derivatives at a single point implies that the isotropy algebra of
A (i.e. ker g4|,) is abelian, and then 7% = 0.

4. d** AND A% IN THE CASE OF A METRIC CONNECTION
Consider some particular cases. Assume that V4 is metric (is compatible with g), i.e.
(0400) (9 (b)) = 9 (Vab,c) + g (b, Vae) forall a,bce I'(A).

We see at once that then the operator M* vanishes. Consequently, the Weitzenbock
Formula reduces to the form
A'=V'V+R*—T°

If V is a torsion-free A-connection on A, then d* = dV is the exterior derivative on A
given in (2.1) and 7% = 0. In particular, if V4 : I' (A) — CDO (A) is the Levi-Civita
connection in A, i.e.
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29 (V;‘IL (:)
= (ea0a)(g(bc)) +(eacd)(g9(a,c)) = (eaoc)(g(ab))
+9([a,0],¢) + g ([e.b], @) + g ([c, a, b)
for any a, b, ¢ € T (A) (then V* is uniquely determined metric and torsion-free connection),
the Laplacian reduces to its classical shape:
A*=V'V + R

If V4 is metric, the coderivative d** we can expressed in the language of the Hodge
stat operator.

Assume that A is oriented and let Q € @™ (A, M X R) be the volume form (n = dim A,
x € M).

For any a € I' (A) we will denote by a* the 1-form dual to ¢ with respect to g, i.e.
a* = g(a,-). We extend g to the scalar product (-,-), on &* (A, M x R) in the usual way
putting

(@A Aa by AL b, = det (<a;, b;f>g> ,
ay, ... a5, b1,... b € I'(A).

Definition 1. Let (ey, . .., e,) be a local oriented orthonormal frame for A and (e*!, ..., e*")
— the dual local orthonormal frame for A*. Let I = (iy,...,ip) and J = (J1,. .., jn—p),
where 1y < ... < iy, j1 < ... < Ju—p, be a complementary set such that (I,J) is a

permutation of {1,...,n}. Let
wr=eMALL A wy=eT AL Ner ve T (E).
Define a C* (M)-linear operator
x 19" (A E) — " (AE)
by
x(wr@v)=e(l,))w;Qv,
where € (I,.J) is the sign of the permutation (I,J) = (i1, ..., ip, Ji, -+ Jn—p)-
One can check that
Q® (#1) (a1, oo an_p) = (1P Pl A LA an_, A1,
for any ay, ..., a,—, € I' (A), n € &7 (A, E).

Consequently, by properties of the star operator on scalar forms (cf. [2]) we obtain
Lemma 7. For anyv € T'(E), f € C* (M), ne &7 (A E), a,a1,...,an_p+1 € I' (A) the
following equalities are fulfilled:

() *(Q@v)=v, x(fQQV)=fr,x(v)=Q®v
(b) (_*’r/) (a1, ...,a"’,p) = (—1)"@'7”) * (a3

(©) da (¥n) = (=1)" x (a* A ),

(d) xxn= (fl)p(”’p) 7.

Now we are going to show that * and a metric connection V commute.

Theorem 4. If V4 is a metric connection,
(41) * (Van) =V, (*7))
forallne o (A E), ac'(A).
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Proof. Let a € I' (A), w € &P (A, M x R), v € E. From Theorem 3.2 [2] we have

(04), ()w) = % ((04), W) -
Therefore, by (2.5) we obtain
Va(x(w®v) = Va

)
04)yW®V+w® V)
(

O

Lemma 8. If (e1,...,e,) is a local frame of A and (e},...,ek) is the dual local frame of
A*, then

n

d'n=73_e;N(Ven)

s=1
forne o (A E).
Proof. Let n € &% (A, E), ay,...,ax41 € I' (A). Then

(da,’,]) (a’17 to ’ak+1) = kij (71)j71 (vﬂjn) ((11, . 'aj EERE) ak+1)

= 2(31 )Sgﬂﬂ (Vamﬂo (o(2), - - to(ir1))
ageS(1,p,

= > sgno (szzlg(ehad(l))gsﬂ (Go@), - -+ Co(r1))

o€S(1,p)

= Y > sgno el (a,w) (Ven) (o), - - Qo))

s=1o0eS(Lp)
- (Zezwes <n>) (.. s asr).
s=1

O

As a conclusion from lemmas 8, 7 (e) and 7 (c) we obtain the following expression of
the exterior coderivative.

Theorem 5. If V* is a metric connection,
(4.2) 4 = (=1)" D ey
forne P (A E).

As a conclusion we obtain

Corollary 1. If V4 is metric, then d* (w A xn) = (d24w) A 1+ (—=1)"Pw A (xd™n) for
wed™(A), ne AP (A E).
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Proof. Observe

wA (xd*n) = neEDFL A (

-1 sk d® % 1)

n(p+1)+1w A <(_1)(nfp+l)(n—(n7p+1)) d° (*7/)>

(=1
(-1
_ (71)n(p+1)+1 (71)(",”1)@,1) WA (da (*77))
(71)np+n+1+'rlP*’L+P(*P+])+P*] w A (d* (1))
(=1Pw A (d" (xn)).
Hence
@ (w nxn) = (d0w) s+ (—1)" w A d® (1)
= (d%w) Axn+ (=)™ Pw A (xd™n) .

5. WEITZENBOCK FORMULA FOR SYMMETRIC FORMS

Let .7% (A, E) be the C*® (M)-module of all symmetric differential forms of values in
the vector bundle E, i.e. the module of sections of S*A*® E C A***® F and .7 (A, E) =
@ SF (A E).
k>0

Define the A-connection

V:I'(A) — CDO(SA* ® E)
in the vector bundle SA* ® E by

G (Val) (arsesa)) = Va (¢ (ar, - ay)) — é((al,“.,Vfa]‘,..,ap),

a,as,...,a, € I'(A), ¢ € 7 (A, E). Observe that—like in the skew-symmetric case—we
have
(5.2) Val(f Q) =f Val+(0a), (f)- ¢
forall ( € S (AE), f € C®(M) = .9°(A,E), a € ' (A), where (94) denote here the
A-connection in SA* ® (M x R) determined by the pair of connections ¢, and V*. So,
indeed the operator V, has values in CDO (SA* ® E) for every a € I' (A). Moreover, if
Ne S (AMxxR),vel(E),ac(A),then
(5.3) Va(A@v)=((04), ) @V +A® V.

The C* (M)-module .7 (A, E) is equipped with the structure of the module over the
algebra . (A, M x R) with the multiplication

©: ISP (A M xR)x S (A E) — SPT(AE)

defined by

Yo C) (ay,..., aﬁq) = Z A ((La(l), RN (Lg(p)) e (aq(p+1), e [La(p+q)) .
o€S(p.q)
Observe that if A € & (A, M xR), ( € & (A, E),ae I'(A):
Va(A0 Q) = ((e4)aV) ©1+ A O (Va()-
Define the symmetric derivative d°* : #* — "1 by

(5.4) (@®n) (a1, ..., a+1) = ki] (Va,n) (a1, G5 ..., ags1)

=1
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forn e %, ay,...,a511 € I (A).
One can observe that

(5.5) d®*=(k+1)-(SymoV) on 7*(A,E)
where Sym is the symmetrizer given by
1

— > ((1,(7(1), .. ,a,,(k)) foralld e I’ (A"g’]f ® E) .

(Sym®) (a1, ...,ax) =
k! oESy

By the symmetric coderivative d** we mean the operator

(5.6) d™ =—troV

SAE) - SH(AE) — AR

where V : I' (A*®% @ E) — I' (A*®**1 @ E) is defined in (2.2), i.e. explicitly

-

(dC) (ar, - .., ar—2) =

C(ej7€j7a17'~7ak—2)
1

J
for ( € ¥ (A E), ay,...,a5_9 € I'(A).
Define the Laplace-type operator on symmetric tensors by
AS — dS*dS _ deS*'
Example 1. Consider the Lie algebroid A = TR" and the trivial bundle £ = M x R.
Take

w= > wadr{? ©dr§? © - @ dayn € SF (A, M xR)
|lal=k

where a = (g, a9,...,q,), || = a1 + @+ -+ + @y, wy € C* (M). Observe that

n 9 .
Ve=3> 3. aﬁ_d%@@dw?l ©drg? ©--- ©daf".
i=1 |a|=k J
and
s n [ o s N
d°w = Z Z amdw]-@dacl Odr3? @ - ©dz
i=1 |a|=k J
n 8(44'(2 o s aj+1 o
= Y Y Stdf ody? o 0di T 0 0 drg
i1 o=k 9T
So,
d”w = —trVw
n X n awa s a1 a1 o
- Zlef Z Z ax_‘S}@dzl O Qadry T O Odrpn
s=1 j=1lal=k 7

n P -
- ZZ (‘)U;(A}ajdz(l)q@"'@dzj] 1®"'@dl‘2”,

=1 |a|=k 7
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Consequently,
Aw = d"d’w— d’d”w
820.},, ay a2 Q.
— Z 2 dz?' ©dzy* ©--- O dx,

laj=k I
= =) (Aw,) daf ©daf? © - © da
|ae|=F

where A*w, = A%, is the classical Laplacian on the smooth function w,,.

Notice that if A is transitive, A® is a second order strongly elliptic operator with the
metric symbol

oas (W) = |w*n, weS(AMXR), ne S (AE).

Indeed, take v € M, ¢ € SFA*® E,, ( € % (A, E) and w € A% such that w = (df) (z) for
some smooth function f satisfying f (z) = 0 and ¢ (z) = e. Since (04) (f) = &°f = d"f,

the relation (5.2) implies that
Gar () = & (JO) (&) = (d°F © ¢+ fd'C) (1) =w O e

and
Gar (w,6) = & (£0) (1) = (ipge€) (&) = ises
hence
Ogogs (W, €) =it (WO €) =i w@e+wd ige
and
Ogsas~ (W, €) = w O iye.
Consequently,

ops (W, €) = Tgsrgsrasass (W, €) = igw Oe=g (wu,wﬁ) e.
Define the symmetric Ricci type operator
R*: S (A E) — (A E)
by

n

(REQ) an, ) = 32 3 (R 0.€) (eg,an, s,

Jj=1s=

—

the operator

T° . (A E) — % (A E)

by
(T°¢) (a1, ax) = 3 (VraeanC) (a1, -, 8,y ap)
j=1
and next,
M S (AE) — (A E)
by

n

k
(M) (a1, yar) = 35 (qu + HV) (VO (ar, ... ay ..., ax),

j=1 s=1
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where ¢ € % (A, E), a1,...,a; € I'(A), (e1,...,e,) is a local orthonormal frame of A,
RY is the curvature tensor of the connection V : I' (A) — CDO(S*A* @ E) defined in
(5.1). Hence, by Lemma 2,

(5.7) (REC) (o,
k
= 3N (VR VEC) (ean ) + (T0) ().

j=

3

)
2

s=1

Theorem 6.
k
—(d™dn) (ay,...,ax) = (trV?n) (a1, ..., ax) + Z (Vgﬁaan> (ej,a,...0s. .., ay)

forn e % (A E).

Proof. Let n € % (A,E), a1,...,a; € I' (A). Then

— (@) d°n) (as,..., ax)
= (trVd*n) (ay, ..., ax)
= Z (ve, (dsﬂ)) (ej,a1,...,ax)
- szl ((d*n) (ej,al,...,ak))—Z(dsn) (Vgej,al,...7ak)

n k

- 22 (d°n) (ej,a1,..., Ve s, .., ar)

n n k
- Zv“ ((Ve,n) (ars- . ap)) + ZZVEJ (Vo) (€5, a1, .. G- .-, az))

n k
Ave]77> (ai,...,ay) — ZZ (Vo) (Vee5,01, .. Gy, ar)

j=1 j=1 s=1
n k
- ZZ (Ve]n) (al, R ijas, .. ,ak)
=1 s=1
n k
,ZZ (va\aﬂ> (ej,a1,...Gs...,ak)
J=1 s=1 ’
n k

_ZZZ(V‘”T/) (fij,ul,”.,Véaw.“ﬁt...,ak) .

j=1 s=1 t#s
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One can see that

(tr Vzn) (a1, ..., ax)

n

- Z(vi(l >(a17~--7@k:)

Jj=1

_ ive]((vem)(al,..,,ak))gzww)( Vo)

j=1
and
(V;_aan) (ej,a1,...0s. .., ay)
= Ve (Ve (eppar. i) = (Vo) (Vhesan . )
72 atn (6.77a17"'7vf]a57'"at"'7ak> - (Vv%ﬂ) (8.7'7(11%‘”65'”7(116)‘
t#s
Hence
— (&) d°n) (a1, .., ar)
n k
= (V) (ar,....a) + > (Vémn) (€jyai, ... Qs . a5).
j=1 s=1
Theorem 7.
k n
(dsds*n)(a17"'7ak):(Msﬂ)(alw"' Z ( ase; ) e],al,...as...Tak)
s=1 j=1
forne S*(AE).
Proof. Let n € S* (A, E), ay,...,a; € I' (A). Since
(tr V) (as, ..., ax)
= Z(Vz,q )(alv"'vak)
j=1
n k
= va’f al,“.,ak zz Ve]n ( a, ..,Vf]as,...,a,k)

j=1 s=1
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and

Vzﬁejn> (ej,ar,... 0. .., ay)

e (VE]n) (ej,an,... ... a) — <Vv{;e]7]> (ej,a1,... 0. .., az)
o (Ve;n) (a1, ... G5 ... ax)) — (Ve;n) (Viejarn,... ..., ar)
=2 ise (Vo) (e, 01,0 Via...,a5) — (vae]77> (ej,a,...0s...,ax),

by (5.4) and (5.6) we have

(

= (trVdn)(as,...,ax)

n

= > (Ve (@) (ejyar,. . ax)

j=1
= Zvej ((d°n) (ej, a1, ..., a;)) — Z (d*n) (Vgej, ap, ..., (zk,)
j=1 j=1
n k
722 (d*n) (ej,al, .. .,ijas, . ak>
j=1 s=1
n n k
= ZVE7 ((Veyn) (a, .. an)) + sze] ((Vam) (ej,a1, ... G5 ..., a))
i=1 j=1 s=1
’ n ]n k
—Z (va‘]ejn> (a1,...,ax) — ZZ (Va,m) (Véej,al, T 7ak)
j=1 j=1 s=1
n k n k
_ ZZ (Ve,n) (ah . .,ijas, . ,ak> - ZZ <vaja5n) (ej,a1,...qs...,a)
j=1 s=1 j=1 s=1
n k
—ZZZ(V(,J]) (ej,ah...,Vgas,...a,...,ak>
j=1 s=1 t#s

n k
= (trV?n) (a1,...,a) + ZZ (Vg}_aﬂ) (ej,a1,...Qs ..., ak).

=1 s=1

O

As a consequence of theorems 6, 7, definitions of 75, M*® and (5.7) we obtain the
following formula on symmetric tensors.

Theorem 8. (Weitzenbick-type Formula for Symmetric Forms)
A*=V'V-R — M*+T°.

Notice that if V4 is a metric A-connection, then M?* = 0, and then A* — V*V =
—R* +T*. In the case where V4 is the Levi-Civita connection, the Weitzenbock formula
for symmetric forms reduces to the shape:

A= V'V - RS
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