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Monogenic functions in
finite-dimensional commutative
associative algebras

Let A7’ be an arbitrary n-dimensional commutative associative algebra
over the field of complex numbers with m idempotents. Let e; = 1,
€2,...,eg, 2 < k < 2n, are linearly independent over the field of real
numbers elements of A]'. We consider monogenic (i. e., continuous and
differentiable in the sense of Gateaux) functions of the variable Zle Tje;5,
where x1,x2,...,xr are real, and obtain a constructive description of
all mentioned functions by means of holomorphic functions of complex
variables. Due to this description obtain, that monogenic functions have
Gateaux derivatives of all orders. The present article is a generalization of
the author’s paper [1], where mentioned results are obtained for k = 3.

1. Introduction. It seemed, W. Hamilton (1843) made the first
attempts to construct an algebra associated with the three-dimensional
Laplace equation

0> 02 02

Asu(z,y,2) =5+ -5+ 25
3u(x,y, 2) (8962 ayQ 022

u(z,y,2) =0 (1)
)

meaning that components of hypercomplex functions satisfy the Eq. (1).

He constructed an algebra of noncommutative quaternions over the field of
real numbers R and made a base for developing the hypercomplex analysis.

C. Segre [2] constructed an algebra of commutative quaternions over
the field R that can be considered as a two-dimensional commutative semi-
simple algebra of bicomplex numbers over the field of complex numbers
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C. M. Futagawa [3] and J. Riley [4] obtained a constructive description of
analytic function of a bicomplex variable, namely, they proved that such an
analytic function can be constructed with use of two holomorphic functions
of complex variables.

F. Ringleb [5] and S. N. Volovel’skaya [6, 7] succeeded in developing a
function theory for noncommutative algebras with unit over the real or
complex fields, by pursuing a definition of the differential of a function
on such an algebra suggested by Hausdorfl in [8]. These definitions make
the a priori severe requirement that the coordinates of the function
have continuous first derivatives with respect to the coordinates of the
argument element. Namely, F. Ringleb [5] considered an arbitrary finite-
dimensional associative (commutative or not) semi-simple algebra over
R. For given class of functions which maps the mentioned algebra onto
itself, he obtained a constructive description by means of real and complex
analytic functions.

S. N. Volovel’'skaya developed the Hausdorff’s idea defining the
monogenic functions on non-semisimple associative algebras and she
generalized the Ringleb’s results for such algebras. In [6], there was
obtained a constructive description of monogenic functions in a special
three-dimensional non-commutative algebra over the field R. The results
of paper [6] were generalized in the paper [7], where Volovel’skaya obtained
a constructive description of monogenic functions in non-semisimple
associative algebras of the first category over R.

A relation between spatial potential fields and analytic functions given
in commutative algebras was established by P. W. Ketchum [9], who shown
that every analytic function ®(() of the variable ( = ze; +yea+zes satisfies
the Eq. (1) in the case where the elements ej,es,es3 of a commutative
algebra satisfy the condition

el +es+e3=0, (2)
because 26 926 020
@-Fain—i—ﬁE@”(() (el +e3+e€3) =0, (3)
where @ := (®’)’, ®'(¢) is defined by the equality d® = &'(¢)d(.

We say that a commutative associative algebra A is harmonic (cf. [9-
11]) if in A there exists a triad of linearly independent vectors {ej, ea, e3}
satisfying the equality (2) with e # 0 for k = 1,2,3. We say also that
such a triad {ej, ez, e3} is harmonic.
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P. W. Ketchum [9] considered the C. Segre algebra of quaternions [2]
as an example of a harmonic algebra.

Further M. N. Rosculet establishes a relation between monogenic
functions in commutative algebras and partial differential equations. He
defined monogenic functions f of the variable w by the equality df (w) dw =
0. In [12], M. N. Rogculet, proposed a procedure for constructing an infinite-
dimensional topological vector space with commutative multiplication such
that monogenic functions in it are the all solutions of the equation

> C Ak =0, (4)

00,01 5000, Qp Oz o1 oy
xq° 0zt ... 0x
aptai+t...dap=N 0 1 p

where Coy,a4,....a, € R. In particular, such infinite-dimensional topological
vector space are constructed for the Laplace equation (3). In [13], Rogculet
finds a certain connection between monogenic functions in commutative
algebras and systems of partial differential equations.

I. P. Mel'nichenko proposed to wuse hypercomplex functions
differentiable in the sense of Gateaux for describing solutions of the
equation (4), since conditions of monogenicity are the least restrictive
in this case. He started to implement this approach with respect to
the 3-D Laplace equation (3) (see [10]). Mel'nichenko proved that exist
exactly 3 three-dimensional harmonic algebras with unit over the field C
(see [10,11,14]).

In [15], it is developed the Melnichenko’s idea for the equation (4).

An investigation of partial differential equations wusing the
hypercomplex methods is more effective if hypercomplex monogenic
(in any sense) functions can be constructed explicitly. Constructive
descriptions of monogenic (i. e. continuous and differentiable in the sense
of Gateaux) functions taking values in the mentioned three-dimensional
harmonic algebras by means of three corresponding holomorphic functions
of the complex variable are obtained in [16-18]. Such descriptions make
it possible to prove the infinite differentiability (in the sense of Gateaux)
of monogenic functions and integral theorems for these functions, being
analogous to classical theorems in Complex Analysis (see, e. g., [19,20]).

Furthermore, constructive descriptions of monogenic functions taking
values in special n-dimensional commutative algebras by means n
holomorphic functions of complex variables are obtained in [21,22].

In [1], there is obtained a constructive description of all monogenic
functions of the variable x1e; + x2e2 + z3e3 taking values in an arbitrary
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n-dimensional commutative associative algebra with unit by means of
holomorphic functions of the complex variables. It follows from this
description that monogenic functions are infinitely differentiable in the
sense of Gateaux.

In this paper we extend results of the paper [1] to monogenic functions

k
of the variable Y x,e,, where 2 < r < 2n.
r=1

2. The algebra A". Let N be the set of natural numbers. We fix
ordered numbers m,n € N, m < n. Let A" be an arbitrary commutative
associative algebra with unit over the field of complex number C. E. Cartan
[23, p. 33| proved that there exists a basis {I.}I'_; in AT satisfying the
following multiplication rules:

0 if r#s,
1. Vr,se[l,m]NN: I.I, = )
I, if r=gs;
2. Vr,sem+1,n]NN: LI, = > AN

p=max{r,s}+1

3. Vsem+1,n]NN Fu,e[l,m]NN Vre[l,m]NN:

0 if 55
IrIs:{ 1. T#u (5)
I, if r=u,.

Moreover, the structure constants Y; 6 € C satisfy the associativity
conditions:

(Al). (I 1), =I.(I;I,) Vrs,pem+1,nNN;
(A2). (I.1:)I, =I,(II,) Yuell,m]NN Vs,pem+1,nNN.

Obviously, that the first m basic vectors {I,}1" ; are idempotents and
define the basis of the semi-simple subalgebra of the algebra A}*. The
vectors {I,};'_,,,1 define the basis of the nilpotent subalgebra of the
algebra A”". The element 1 =Y | I,, is the unit of A"

In the cases where

Consider some particular cases of A7".

Proposition 1 [1]. If there exists the unique ug € [1,m] NN such that
I,,Is = Is for all s = m+1,...,n, then the associativity condition (A 2)
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1s satisfied.

Thus, under the conditions of Proposition 1, the associativity condition
(A1) is merely required. It means that the nilpotent subalgebra of AT
with the basis {/,}]_,,,; can be an arbitrary commutative associative
nilpotent algebra of dimension n — m. Note, that such nilpotent algebras
are completely described for the dimensions 1,2, 3 in the paper [24], and
some four-dimensional nilpotent algebras can be found in [25, 26].

Proposition 2 [1]. If all u, are distinct in the multiplication rule 3,
then I;I, =0 for all s,p=m+1,...,n.

Thus, under the conditions of Proposition 2, the multiplication table
of the nilpotent subalgebra of A" with the basis {I,.};'_,, consists only
of zeros and all associativity conditions are satisfied.

The algebra A" contains m maximal ideals

n
quz{ Z )\TITI)\TG(C}, u=12...,m,

r=1,r#u

and their intersection is the radical

R ::{ zn: M, A € C}.

r=m+1

Consider m linear functionals f,,: A" — C satisfying the equalities
fulln) =1, fulw)=0 VweZ,, u=12...,m.

Inasmuch as the kernel of functional f, is the maximal ideal Z, obtain,
that this functional is also continuous and multiplicative (see [27, p. 147]).

3. Monogenic functions. Let us consider linearly
independent over the field of real numbers R (see [22]) vectors
e1 = l,eg,...,ep in AT where 2 < k£ < 2n. It means that the
k

equality > aje; = 0,a; € R, holds if and only if o; = 0 for all
j=1

i=1,2,.. .k

Let the vectors {ey,...,er} have the following decompositions in the
basis {I, }7_;:

m n
612217-, ej:Zaer., Clj,-E(C, i=23,...,k. (6)
r=1 r=1
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k
Let ¢ := > z;e;, ; € R. Evidently, that
j=1

k

fu ;:fu(C):xl—l—ijaju, u=1,2,...,m.

j=2

k
Let Ey = {( = > zje; : z; € R} be the linear span of vectors
j=1

{e1,...,er} over R.
Let Q be a domain in E;. With a domain Q C FEj we associate the

k
domain Qp := {(xl,.%'g,...,l‘k) ERF: (= zje5 € Q}
j=1

We say that a continuous function ®: Q@ — A" is monogenic in Q if ¢
is differentiable in the sense of Gateaux in 2, i.e., there exists an element
®'(¢) € A} such that

: _ -1 _ i
lim ((C+eh) — ®(Q) et = hd'(() VhE By (7)
in any ¢ € Q. The function ®'(¢) is the Gateauz derivative of the function
® in the point (.
Consider the decomposition of a function ®: 3 — A" in the basis
{4}

<I>(C):ZUT(a:l,xg,...,xk)IT. (8)
r=1
If functions U,: Qg — C are R-differentiable in Qg, i.e.,
for every (x1,x9,...,2%) € Qg the following asymptotic equality
is valid: Uy (21 + Az, 20 + Axg, ..., x5 + Azg) — Up(21,29,...,25) =
k k k
= > gg’j Az; + o Yo (Azj)? ), Z(ij)2 — 0, the function ® is
j=1 j=1 j=1

monogenic in the domain 2 if and only if the following Cauchy — Riemann
conditions are satisfied in €2

9> 0d

— = _—¢; forall j=2,3,...,k. 9
oz, 8x16j or all j 9)

4. Expansion of the resolvent. Let b := Z b, I, € A, where
r=1
b. € C. Note, that f,(b) =b,, u=1,2,...,m. It follows form Lemmas 1,
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3in [1] that

m 1 n sm+1Q
Zb— + Y Z ns (10)

u=1 Y s=m+1 r=2 uS

where @ns are determined by the following recurrence relations:

s—1
Q2,s ::bsa Qr,s: Z Qr—l,qu,.€7 7’:3,4,...,57m+1,
qg=r+m—2
(11)
N s—1
By s = Z bpYh o, p=m+2m+3,....n, (12)
p=m+1

and the natural numbers u; are defined by the rule 3 of the multiplication
table of the algebra A]".
In the next lemma we find an expansion of the resolvent (te; — ¢)~!.

Lemma 1. The resolvent has the following expansion

n s—m-+1 Q
(tey — )7 ' = Z I+ >y t_gs (13)

ul s=m+1 r=2
VteC: t#&, u=12,....m,

where coefficients Qs are determined by the following recurrence
relations:

s—1
Q2,s:T57 Qr,s: Z Qrfl,qu,sa r:3,4,...,s—m+1,

g=r+m-—2

(14)

here

s—1

T, := ijajs, By s = Z T,Y0 o, p=m+2,m+3,...,n, (15)

j= p=m+1

and the natural numbers us are defined by the rule 3 of the multiplication
table of the algebra AT'.

Proof. Taking into account the decomposition te; — ( =

m n k
Yot — &) — Y > xjajs I, conclude, that the relation (13)
u=1 r=m+1j=2
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follows directly from the equality (10) in which instead of b,, u =
=1,2,...,m, it should be used the expansion ¢t — £,; and instead of by,

k
s=m+1,m+2,...,n, it should be used the expansion > z;a;s. The
=2

lemma is proved.

It follows from Lemma 1 that points (21, s, ...,2;) € R¥, which are
k
correspond to the non-invertible elements ( = > z; e;, form the set
j=1

k
z1+ > zjReaj, =0,
Jj=2

Mf‘ X u=1,2,...,m
> z;Imaj, =0,
j=2
in the k-dimensional space RF. Consider the set M, = {( € Ej :

: fu(¢) = 0} for u = 1,2,...,m. It is obvious that the set MF c R*
is congruent to the set M, C Ek.

5. A constructive description of monogenic functions.
We say that a domain Q) C Ej is convex with respect to the set of directions
M, if © contains the segment {¢1 +a(la— (1) : @ € [0,1]} for all (1,¢2 € Q
such that (o — (1 € M,,.

Denote f,(Fr) := {fu(¢) : ¢ € E;}. In what follows, we make

the following essential assumption: f,(Ey) = C for all v = 1,2,...,m.
Obviously, it holds if and only if for every fixed u € {1,2,...,m} at least
one of the numbers agy, a3y, ..., 0k, belongs to C\ R.

Further in this section, we suppose that a domain Q) C Ey. is convexr with
respect to the set of directions M,, and f,(Ey) =C for allu=1,2,...,m.

Lemma 2. Suppose that a function ®: Q@ — AT is monogenic in
the domain Q. If points (1,2 € Q such that (o — (1 € My, then

P(C2) — (C1) € Zu (16)
Proof. Inasmuch as f,(E)) = C then exists an element e} € Ej such

that f,(e5) = i. Consider the lineal span E* := {( = ze] + ye} + ze} :
x,y,z € R} of the vectors e} :=1,e5,e% := (2 — (5.
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Now, the relations (16) can be proved in such a way as Lemma 2.1 [16],
in the proof of which one must take Q N E*, f,, {ae} : @ € R} instead of
Q¢, f, L, respectively. Lemma 2 is proved.

Let a domain 2 C Ej be convex with respect to the set of directions
M,,u=1,2,....,m, D, := f,(Q) C C.

We introduce linear operators A,, v = 1,2,...,m, which assign
holomorphic functions F,: D,, — C to monogenic functions ¢:  — AT
by the formula

EL(SU) = fu(q)(g))a (17)
E
where &, = fu(¢) = z1 + Y z;aj, and ¢ € Q. It follows from Lemma 2
=2
that the value F,(&,) does not depend on a choice of a point ¢ for which

Now, similar to proof of Lemma 5 [1] it can be proved the following

statement.

Lemma 3. Suppose that for any fired u = 1,2,...,m, a function
F,: D, — C is holomorphic in a domain D, and 'y, is a closed Jordan
rectifiable curve in D,, which surrounds the point &, and contains no points
£, 9=1,2,...,m, q¢#u. Then the function

U, () = Iu/Fu(t)(tel —¢O)~tat (18)

Ty
is monogenic in the domain Q.

Lemma 4. Suppose that a function V: Qr — C satisfies the
equalities

v _ov v _ov wvo_ov
6562 n 6561 2 31’3 o 31’1 Bus Y azk B 6581 b
in Qgr. Then V is a holomorphic function of the variable &, = f,(¢) =
k
=221+ Y xjajy in the domain D,,.
=2

Proof. We first separate the real and the imaginary part of the
expression

k k
gu =+ ZIj Reaju + 1 ZI]' Imaju =Ty +Z’I7u (20)

j=2 j=2
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and note that the equalities (19) yield

ov ov Vv
Tmlmagu:iTmImagu, ey ainu]:maku:iaim]:maku. (21)
It follows from the condition f,(E;) = C that at least one of the
numbers Imas,, , Imag, ,...,Imb, is not equal to zero. Therefore, using
(21), we get
oV oV
— = 22
on, ' om (22)
Now we prove that V(z,25,...,2)) = V(af,25,...,z}) for points
(xh,xh, ... xp), (e, 25, ..., x)) € Q such that the segment connecting

these points is parallel to a straight line L, C MLR . We use considerations
with the proof of Lemma 2. Since f,(E;) = C, then there exists an
element €5 € FEj such that f,(e5) = i. Consider the lineal span E* :=
= {¢ = zeftyes+zel : x,y, z € R} of the vectors ef := 1, e3, e} := ('—(”,

k k
where (" 1= Y xle;, ("= ale;.
Jj=1 Jj=1

Now, the relation V(z},5,...,z}) = V(zf,25,...,z}) can be proved
in such a way as Lemma 6 [1], in the proof of which one must take
QN E* {aej : a € R} instead of Q¢ , L, respectively. The lemma is proved.

Thus, a function V': Qg — C of the type V(z1,2a,...,2%) := F(&,),
where F(§,) is an arbitrary function holomorphic in the domain D, , is a
general solution of the system (19). The lemma is proved.

Theorem 1. Every monogenic function ® : £ — A" can be expressed
in the form

_ 1 et
v =D Ly / Fu(t)(ter = Q7 de+
+ _X:HIS QLM G4 (t)(tey — ¢)~ L dt, (23)

where F,, and G are certain holomorphic functions in the domains D,
and D,,_, respectively; I'y is a closed Jordan rectifiable curve in Dy which
surrounds the point &, and contains no points &, €,q =1,2,...,m, L #q.

Proof. We set
F,:=A,9 u=1,2,...,m. (24)
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Let us show that the values of monogenic function
m 1 -
Bo(Q) =00 = YLy [ POt~ Ot (25)
u=1 I

belong to the radical R, i.e., ®¢(¢) € R for all ¢ € Q. As a consequence of
the equality (13), we have the equality

1 _ 1 Fu(t)
I,— | Fu(®(tey — O Vdt =1, — dt
2772'/ (#)(ter — <) 27Ti/t—£u *
Fn

u

s—m-—+1

L L@,
=PI ke L

s=m+1 r=2 e

from which we obtain the equality

(ZI / @a -0 at) =Fue). 0

Ty

Acting the functional f, onto the equality (25) and taking into
account the relations (17), (24), (26), we get the equality f,(®o(¢)) =
=F, (&) — Fu(&) =0forallu=1,2,...,m, i.e., &o(¢) € R.

Therefore, the function ®g is of the type

n
Z ‘/s(xthy'"axk)Isv (27)
s=m-+1
where functions Vs, s = m + 1,...,n, are of the type V;: Qg — C.

Cauchy—Riemann conditions (9) are satisfied with ® = ®;. Substituting
the expressions (6), (27) into the equality (9), we obtain

WV, &
IS ’I‘I’!‘ b)
axl ;aQ

n n

Z 81’2

s=m-+1

s=m-+1

Z 8x;€ Z 0x1

s=m+1 s=m-+1




262 V. S. Shpakivskyi

Equating the coefficients near I,,11 in these equalities, we obtain the
following system of equations with unknown function V,, 1 (21, z2, ..., x):

anJrl o an+1 ava+1 o anJrl

0xs oxy umprs e Oxi, 0xy Wty -
It follows from Lemma 4 that Vi, 11 (z1, 22, ..., 2k) = Gy (€u,,, ), Where
G+ is a function holomorphic in the domain D, , . Therefore,
n
(I)O(C) = Gm+1(§um+1) Im+1 + Z Vvs(xlv T2, .. 7:1;16) I . (29)

s=m-+2

Due to the expansion (13), we have the representation

1
Iinya 2 / G (t)(ter — Q)7 dt = Grug1 (bupsy) Ims1 +¥(C), (30)
T

Um+1

n
s=m-+

where ¥(() is a function with values in the set { >
Now, consider the function

ol g € (C}.

e A B
Tupiy

In view of the relations (29), (30), ®; can be represented in the form

q)l(g): Z "73('1:173327"'azk)187

s=m+2

where functions ‘N/S, s=m+2,...,n, are of the type Vy:Qp — C.

_ Inasmuch as &®; is a monogenic function in (2, the functions
Vint2s Vints, ..., Vo satisfy the system (28) with V41 = 0,
Vs = Vi for s = m +2,m + 3,...,n. Therefore, similarly to the function
Vinsi1(z1,22,...,2%) = Gmy1(&u,.., ), the function Vo satisfies the
equations

aV'm+2 _ 8Vm+2 a 8Vm+2 _ an+2 a
Oxs Oxy  Zumizo o Oxy, Oxy | ume2
and is of the form 17m+2 (1,22, ..., %) = Gry2(&upnis), Where Gryqa is a

function holomorphic in the domain D,,, ., .
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In such a way, step by step, considering the functions

2(Q) = (0~ I 5 [ Gas(Oter = O

T

Ym+j

for j =2,3,...,n—m — 1, we get the representation (23) of the function
®. The theorem is proved.

Taking into account the expansion (13), one can rewrite the equality
(23) in the following equivalent form:

n s—m-+1
o(() = Z )+ Y. Z FIY (&) It
u=1 s=m+1 r=2
n n s—m-+1
+ Z é.“11 Z Z Z QT@G(T 1)(§“q)
qg=m-+1 qg=m+1s=m+1 r=2

(31)

Thus, the equalities (23) and (31) rebuild any monogenic functions
® : Q — A" by n corresponding holomorphic functions of the complex
variables in the explicit form.

The following statement follows immediately from the equality (31)
due to its right-hand side is the monogenic function in the domain IT :=
= {CEEkfu(C) Dy, u= 1,2,...,777,}.

Theorem 2. Every monogenic function ®: Q@ — A" can be continued
to a monogenic function in the domain II.

The next statement is a fundamental consequence of the equality (31).
It is true for any domain ).

Theorem 3. Let f,(Ey) = C for allu=1,2,...,m. Then for every
monogenic function ®: Q — AT in an arbitrary fired domain O, the
Gateauz r-th derivatives @) are monogenic functions in Q for all r.

The proof is completely analogous to the proof of Theorem 4 [16].

Using the integral expression (23) of monogenic function ® : Q — A"
in the case where a domain §2 is convex with respect to the set of directions
M, ,u=1,2,...,m, we obtain the following expression for the Gateaux
r-th derivative ®("):

m r+1
Q) =Y Luy /F (ber—¢)7") dt+

u=1
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+ Z IS%/Gs(t)((tel—o’l)r“dt V¢eN.

s=m-+1 T

s

6. Remarks. We note that in the cases where the algebra A™ has some
specific properties (for instance, properties described in Propositions 1 and 2),
it is easy to simplify the form of the equality (31).

1. Under conditions of Proposition 1 the following equalities hold: w41 =

Um+2 = ... = un =: 7, the representation (31) gets the form
s—m—+1
o(¢) = Z ()L + Z > ¢ QMFY V(&) L+
u=1 s=m-+1 r=2
n n s—m—+1
Y Gt Y Y > o @G V@ L. (32)
s=m+1 g=m+1s=m+1 r=2

The formula (32) generalizes representations of monogenic functions in both
three-dimensional harmonic algebras (see [16-18]) and specific n-dimensional
algebras (see [21,22]) to the case of algebras of more general form and to a
variable of more general form.

2. Under conditions of Proposition 2 the representation (23) gets the form

m

Q)= Fu(e)l+ Y. Guleu)L+ Y. TF, (6 ).  (33)

u=1 s=m-+1 s=m+1

The formula (33) generalizes representations of monogenic functions in both
a three-dimensional harmonic algebra with one-dimensional radical (see [17]) and
semi-simple algebras (see [18,22]) to the case of algebras of more general form
and to a variable of more general form.

3. Let n = m. Then the algebra A, is semi-simple and contains no
nilpotent subalgebra. Then the formulae (32), (33) combine to the form ®(¢) =

>~ Fu(&u)lu , because there are no vectors {Ix}p—_,,,1. This formula is obtained
u=1
in the paper [22].

7. Relations between monogenic functions and
partial differential equations. Consider the following linear
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partial differential equation with constant coefficients:

) o oNo
Tk) = E O
’ AR Gt Qwy? L. Ok

aitas...+ap=N

LNU(l'l,Z‘Q,... :0,

(34)

If a function ®(¢) is N-times differentiable in the sense of Gateaux

. f¥1tast. Fap g _ ai a2 Qg altoast...Fag _
m Q, then m = 61 62 ...ek (I)( 1 2 )(C) =

= e5%e3® ... ef* ®N)((). Therefore, due to the equality

Ly =2 Y. Caposcc 6?65 gt, (35)
a1tast...+ap=N

every N-times differentiable in the sense of Gateaux in 2 function &
satisfies the equation Ly®(¢) =0 in Q if and only if

Qo o ap
E Calaa%“wak 622633 Tt ekk - (36)
a1tas+...+ap=N

Really, it follows from (36) that real-valued components
ReUi(x1,z2,...,2) and ImUg(z1,x9,...,25) of the decomposition
(8) are solutions of the equation (34).

In the case where f,(E;) = C for all u = 1,2,...,m, it follows from
Theorem 3 that the equality (35) holds for every monogenic function
O: O — AT

Thus, to construct solutions of the equation (34) in the form of
components of monogenic functions, we must to find & linearly independent
over the field R vectors (6) satisfying the characteristic equation (36) and
to verify the condition: f,(Ey) = C for all v = 1,2,...,m. Then, the
formula (23) gives a constructive description of all mentioned monogenic
functions.

In the next theorem, we assign a special class of equations (34) for
which f,(Fx) = C for all w = 1,2, ..., m. Let us introduce the polynomial

P(by,bs, ..., by) := > Cotron,oor D205 035 (37)
artaz+...tap=N

Theorem 4. Suppose that there exist linearly independent over the
field R wvectors e; = 1, ea,...,ex in A" of the form (6) that satisfy
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the equality (36). If P(ba,bs,...,br) # 0 for all real ba,bs, ..., by, then
fu(Ey) =C for allu=1,2,...,m.

Proof. Using the multiplication table of A" we obtain the equalities
m

m
« « (e 7% [
eg? = Y ad?l, + U, ..., ey = Y ap*I, + O, where
u=1 u=1

Ur,...,0r € R. Now the equality (36) gets the form

> Car sz, un (Z ag? ... af* I, + EJR) =0, (38
u=1

artaz+...tap=N

where \T/R € R. Moreover, due to the assumption that the vectors
e1,ea,...,e, of the form (6) satisfy the equality (36), exist complex
coefficients a;, for j = 1,2,...,k, r = 1,2,...,n that satisfy the equality
(38).

It follows from the equality (38) that

[e% (7%
E Caryam,.ay, op - -G =0, u=1,2,...,m. (39)
aitaz+...+ap=N

Since P(ba,bs,...,br) # 0 for all {ba,bs,...,br} C R, the equalities
(39) can be satisfied only if for each w = 1,2,...,m at least one of
the numbers agy,, asy, - -, ag, belongs to C\ R that implies the relation
fu(Eg) =C for all u=1,2,...,m. The theorem is proved.

We note that if P(bs,bs,...,bs) # 0 for all {by,bs,...,bx} C R then
CnN,0,0.....0 # 0, because otherwise P(be,bs,...,bg) =0 for by =bs=... =
=b =0.

Since the function P(bo,bs,...,b;) is continuous on R¥ the
condition P(bg,bs,...,br) # 0 means either P(bg,bs,...,br) > 0 or
P(ba, bs,...,b;) <0 for all real by, bs, ..., bs. Therefore, it is obvious that
for any equation (34) of the elliptic type, the condition P(bg, b3, ..., bx) # 0
is always satisfied for all {by,bs,...,b.} C R*. At the same time, exist
equations (34) for which P(bg,bs,...,b;) > 0 for all {bg,b3,...,bx} C R,
but which are not elliptic. For example, such is the following equation in

4. Bu B3u By P _
R*: ox3 + 0w 013 + 01023 + 0x10x7 0.
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