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For 2D composite material geometrically composed by an interior of ellipse
E; (with semi-axes a1, b1) and an outer elliptical ring with an outer
ellipse E> (With semi-axes az, b2), where E1 and FE» are confocal ellipses;
it is determined in an analytic form the x-component of the effective
conductivity tensor as a sum of convergent power series with coefficients
depending on conductivities of the components of the composite material
and geometrical characteristics a1, b1 and a2, ba.

JJ1s1 ABOBUMIpPHOTO KOMITO3HUIITHOTO MaTepiaJy, 10 TeOMETPUYIHO yTBOPE-
HUIl BHYTPIMHICTIO ejinca Fj 3 miBocsME a1, b1 Ta NPUIETIAM €TiITUY-
HUM KiJIbIIEM 3 30BHIMIHIM ejiincom Fo 3 miBocsmu az, bz, a E1 ta Fe ma-
IOTh CIUTBbHI (pOKYyCH, OepKAaHO AHAJITUIHAN BUPA3 T-KOMIIOHEHTH TEH-
30py eEeKTUBHOI MPOBIAHOCT] ¥y BUIVISAI CyMu 30i?KHOTO YHUCTIOBOTO PSIIY,
KOediIiEHTH SKOTO 3aJieXKaTh BiJl IPOBIAHOCTEH KOMIIOHEHTIB KOMIIO3UTY
Ta TEOMETPUYHUX XaPAKTEPUCTUK a1, b1 Ta az, ba.

JJ1sT TIOCKOTO0 KOMITO3UITMOHHOTO MaTepHuaJia, TeOMETPUIeCKH 0Opa30BaH-
HOI'0O BHY TPEHHOCTBIO 3JIJIUIICA Fic IOJIyOCAMU a1, b1 m mpuexaIyM 3J1-
JIMIITUYECKUM KOJIBIIOM C BHEIIHUM 3JIJIMIICOM E2 C IIOJIYOCAMU a2, b27 a
Ei n E> nmeror obmue GOKYCHI, HMOJYyUIEHO AHAIUTHYUECKOE BBIPAsKEHUE
Z-KOMIIOHEHTBI TeH30pa 3P MOEKTUBHON TPOBOIUMOCTHA B BUJIE CYMMBI CXO-
JLAIero 9YucjaoBoro psjja, KOS(l)dDI/ILLHeHTI:I KOTOpPOI'O 3aBUCAT OT IIPOBOJ/IH-
MOCT€ KOMIIOHEHT KOMIIO3UTa, W TEOMETPUIECKUX XAPAKTEPUCTHUK a1, b1 U
asz, bz.
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1. Introduction. Circular type 2D mechanical structures are
subject of long investigations. In the pioneering work [8] (see also [9])
it had been found a complete solution of the problem of torsion and
bending of elastic cylindric body reinforced by parallel cylindric beems Sy,
k=1,...,m, of different materials. The author showed that this problem
is equivalent to certain mathematical problem, which can be formulated
in the following form.

Problem M. Let S, k=0,1,...,m, are simple connected domains of
the complex plane C with smooth boundaries Cy, C1, ..., Cp,, such that the
contour Cy embraces any contour Cy, k=1,...,m. Let S := Sp\ U}, Sk.
The problem is to find a function ¢ which harmonic in S, continuous in
cl(So) and such that its normal derivative has a given jump on each contour
Ck, k:O,l,...,m.

Here and anywhere cl(G) denote a closure of any domain G C C.

In [8], it was proved that the problem is equivalent to a system of
m + 1 Fredholm integral equations of the second kind which has solutions
under some solvability conditions and the solution is unique up to an
additive constant. The main aim of this article is to calculate some
elastic characteristics of this elastic cylindric body reinforced by parallel
cylindric beams. One of these is, so-called, elastic torsional rigidity, which,
mathematically, is a real valued functional depending on the solution of
the latter problem.

Although, the solution of the problem M is a solution of a system of
Fredholm integral equations of the second kind, from the practical point of
view we have evident difficulties to get its explicit expressions. Therefore,
for the practice it is interesting any partial case of problem M which allows
to find a method for its solving in an explicit form. For example, in case
when m = k =1 and Sp and S are disks (or what is equivalent S}, and
S’ are disks with common origin ) the problem M, is solved by the direct
method based on expansions in Taylor’s and Laurent series of a function
f(2), which is analytic in S1US’, 8" = S{ \ c1(S]). The function f(z) is
such that its real part Ref equals to an unknown required function ¢ in
S U S’. By using this solution the elastic torsional rigidity is calculated
in an explicit form in [11]. The case when m = k = 1 and Sy and S are
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confocal ellipses has been considered in [10]. The proposed method in this
paper is based on the reduction of Problem M for confocal ellipses to
similar boundary value problem but for two bounded rings, therefore, the
method of solution of the latter problem based on conformal technique,
which maps our ellipses, by using an analytic function of Zhukovskii type,
to disks and after using Laurent expansions.

See also [5], where the method of functional equation (cf., [6]) is
developed to derive analytical approximate formulae for the effective
conductivity tensor of the two-dimensional composites with elliptical
inclusions which number is greater then two.

The aim of present paper is to solve a problem similar to Problem
M when m = k = 1 and Sy and S are bounded by confocal ellipses
E, = Cy and Ey; = (Cy, describing the 2D composite material with
the elliptical inclusion, geometrically represented by a simply connected
domain bounded by the ellipse Fj, and the matrix, geometrically
represented by the elliptical annulus S bounded by two ellipses F; and
FEs.

On the base of this solution, we calculate an analog of the
elastic torsional rigidity, which is a z-component of, so-called, Effective
Conductivity Tensor (see, e.g., [2, 4]). More precisely, we consider the
problem of determination of the temperature distribution under perfect
contact condition in the above described inhomogeneous media loaded by
a simple heat flow. Note, that this problem is equivalent to the R-linear
conjugation problem on the complex plane (see [6, p. 45]). Note, that for a
case of disk-ring composite material in [3] it was delivered for z-component
of the effective conductivity tensor its exactly expression in terms of radius
r of the internal disk and so-called contrast parameter p introduced by
Bergmann [1] in the form of geometrical progression with respect to the
powers of r2.

2. Definitions and formulation of the problem. Let C
be the field of complex numbers and the complex plane, R be the field of
real numbers. For any £ from C or R denote by |¢] its modulus. For any
z € C denote by Re z its real part, and by (n,0),0 <n < oo, 0 < 0 < 27
its polar coordinates, thus, z = nexp{if}.

Let 2 be an open or closed domain in C and let 7 : 2 — R be a
real valued function, then C*(Q), k € 1,2, ..., denotes a class of functions
having continuous partial derivatives up to k-th order. If 7 € C2(f2) then

. 2 2
AT(z +1iy) := % + gfy;
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Let G and G°, G ; G°, are simply connected domains in C. For any
function u : G° — R by u; and uz we mean its restrictions, respectively,
to G and G := G°\ cl(G), i.e., uy := u|g m uy := u|z. Denote by E; and
Ejy, respectively, boundaries of G and G°, i.e, By = 0G, Ey = 0G°. Thus,
8G = E1 @] E2. _

Problem A for the system of domains (G, G) is a problem on finding a
pair of real-valued functions u = (uy,us), where u; € C*(G) N C*(cl(@))

and up € C3(G) NCL(G), satisfying the following system of equations

Au(z) =0 Vze GUG,
us(t) = —Ret vVt € Fs, (1)
Ul(t) = Ug(t) Vi S E17

M2 (t) = N%2(t)  Vte By,

where \; and )\, are positive constants such, that the Bergmann’s contrast
parameter (see [1]) p := (A1 + A2) " (A1 — o) is different from zero (it is
well known, that —1 < p < 1); ui(t) and uz(t) denote, the limiting on
E; values of, respectively, ui(z), z € G, and ua(z), z € (~¥; % and %
denote, respectively, the outward normal derivative of u; with respect to
the boundary E; of the domain G and the inward normal derivative of us
with respect to the connected component F; of the boundary 9G of G.
Note, that Problem (1) (cf., e.g., [6, p. 45] with A2 = 1) can be reduced
to the following R-linear conjugation problem: to find two functions ¢ :
GUG — C, ¢9 : CU{x} — C, ¢y(c0) = 0, such that ¢ is analytic in
G UG, ¢ is analytic in ext G° := {z € C : z€cl(G°)} and continuous in
cl(ext G°), functions ¢ and ¢q satisfy the following conjugation conditions

$T(t) =9~ (t) —pp=(t) VtEEr, ¢ (t)=¢olt) —do(t)—t Vte E(za)

2
where ¢T(t) and ¢T(t), t € Ej, is boundary values of ¢(z), accordingly,
from G, 57 U+ v = u —iv for u,v € R.

In [7], it has been considered the problem of disturbance of a complex
potential after insertion of a foreign inclusion in the form of a two-
phase confocal elliptical annulus into a homogeneous medium. There were
investigated the cases of an arbitrary distribution of singularities.

Our aim is to calculate an xz-component of the effective conductivity

tensor ( see, e.g. [4]), i.e. a quantity A, ;, satisfying the following equality

dur

T\T - 1 aUQ
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where u(z,y) = (u1(x,y), u2(x,y)) = (u1(x + ty), ua(x + iy)) is a solution
of Problem A for the system of domains (G, C~v'), F? is a complete flux in
z-direction.

For any € > 0 by D, denote a disk {¢ € C: |[{| < €}, 7. means a circle
{¢ € C: [¢| = €}. For a pair of positive real numbers ry, ro, 71 < 9, denote
by Ay, », the set {{ € C:ry <|(| < ra}.

In [3], a quantity (3) is calculated in an exactly form for the system of
domains (D,, A, 1), 0 < r < 1, as a functional depending of r, analytically
expressed as a sum of geometrical progression with respect to powers of
r2.

Assume further, that a boundary dG° of a domain G° is an ellipse Fy
with semi-axes as, ba, as > bo, OG is an ellipse Fy with semi-axes a1, by,
ay > by, moreover, ellipses F; and E5 have common focuses F; = —c¢ and
Fy = ¢, where ¢ = /a3 — b3 = \/a? — b}. Then ay > ay, by > by, 2c is the

focus distance, GG is an elliptical ring bounded by ellipses F; and Es.

3. Auxiliary A-problem. Denote by

as + by
<1, R= > 1. 4
ai + by ay + by @

Consider a mapping w: C\ {¢ € C : || < m} — C\ [F1, Fy,
[F1, Fy] :={x : —c <z < ¢} defined by

n=a +b,m=

z=x+z’y=:w(<)z’;(<+"£2>. (5)

Obviously, that the mapping (5) is an analytic function, thus, it is one-
to-one correspondence and the following formulae hold

n m? n m?
x=ux(n,0 E(n—f—)cose,y:yn,e E(n—)sin@, 6
mo)=5 (n+7 mo=5 (1-2 (©

where ¢ = nexp{i6}.
If a point ¢ = nexp{if} runs through the circle 7,,, then w({) twice
runs through the segment [Fy, F3] and the following equality holds

w (mexp{if}) = w (mexp{—if}),0 <0 < 27. (7)
Valid the following equalities

w(Am1) =G\ [F1F)], w(n) =E1, w(Aygr) =G, w(yr) = Ea.  (8)
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Let f(z) be analytic in G U G function such, that Ref(z) = u(z) is a
solution of the system (1). Then the function ¢g({) := f(w(¢)) is analytic
in Ay, 1 UAq g and a system (1) for a function u(¢) = v({) := Reg({),
taking in account equalities (6) and (8), transforms to the form

A’U(C) =0 VC S Am,l U Al,Ra
va(¢) = -2 (R n %) cos V¢ = Rexp{if} € va,
v1(¢) = v2(¢) V¢ €,
A Qv g;p{i@}) ’ =X dva(n g;p{i@}) Y9 eo,2q]

n=1 n=1

(9)
A problem on finding a function v = (v, vs), where v; € C2(A,, 1) N
Ct(cl(Ay1)) and vg € C?(A1 g) N Ct(cl(Aq g)), which satisfy the system
of equations (9) call an auxiliary A-problem.
Using analyticity of g1 := g|,  and gs := = ¢ A, - Tespectively, in A, 1
and A; g, we have the following expansmns in the Laurents S series

o0
Q) =ap+ibp+ Y (ap+ibp)¢" VCEAny,  (10)
k=—o00, k#0
g2(Q)=ag +ibg+ Y (af )" VCeArr,  (11)
k=—00, k0
where aj, af/, b}, b}/, k = £1,+£2, ..., denote unknown real numbers. Going

to real parts in (10) and (11), obtain formulas

=agy + Z (ajn® + a’_yn ™) cos(k6)—
k=1

Mg

(bkn —bn k) sin(kf) V¢ =nexp{if} € Ap 1, (12)

=
Il
—

=ag + Z (afn® + a” ;%) cos(ko)—

Mg

(bn® = ", ") sin(k0) V¢ = nexp{if} € Ay g. (13)

El
Il
-
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Since w maps exterior extD,, of the disk D,, in the complex plane of
the variable ¢ to the complex plane of the variable z with a cut along
the segment [F, Fy], then the problem (1) is equivalent to auxiliary A-
problem if and only if when the function (10) has coinciding limiting
values on different sides of the cut +,,, which, by virtue of the formula
(7), is equivalent to the validity of the following equality g (mexp{if}) =
g1 (mexp{—i6}),0 < 0 < 27, which in turn leads equalities

a ,=m*a),, b, =m, k=1,2.... (14)
Substituting (13) with n = R to the second condition in (9), obtain
ag = O, a'il = —g (R2 + m2) — Rgall', (15)
a’y=—R%a) k=23,..., V', =R¥™b k=1,2,.... (16)
Substituting equalities (12) — (15) with 7 = 1 to the third condition in

(9), obtain
1-R?* , nR*+m?

/ I
— = _ 1
4 =0, @ T+m2™ " 2 14m2 (17)
1 — R2k 1— R
;o v ;o "7
akfmak,k—%?),..., bk—m k’ki]'???"" (18)

Now the equality (12) by using the relations (14), (17) and (18), turns
to the form

1-R? , nR2+m2>< m?

=|——=a — = — 0
v1(Q) (1+m2a1 2 T me n+ o )cos +

0 1— R2k i m2k
+Z T ok a% (77 + k> COS]CH—
P 1+m n
< 1 _ Rp2k m2E\ _
— Z R by <77k - 77’“) sinkf V(¢ =nexp{if} € An1. (19)
k=1

Taking into account (15) and (16) we rewrite (13) in the form

ve(¢) = (a’l'n - (g(R2 +m?) + R2a'1’) 77_1) cos 0+
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o 2k
gl (T,k _ ]f?k) sinkd V¢ =nexp{if} € Ay g. (20)

Substituting delivered equalities (19) and (20) to the fourth condition
in (9), obtain, after division on A\; + Mg, the following relations

(1+m?R?) p—m? — R*) a = g(R2+m2)(1 —m®p), (21)

((L+m*R*) p—m* —R*)a =0, k=2,3,..., (22)

(L=m*R*) p+m* —R*) b, =0, k=1,2,.... (23)
Since

p<1, A+m*R**) I (m* 4+ R™*) > 1,k=1,2,..., (24)

and the modulus of the expression (1 — m2?*R?*)=1(R2F — m?2¥) is greater
then one for all natural k by virtue of inequalities m < 1 and R > 1, then
relations (21) — (23) implies equalities

2 2 _ 2
(B? +m?) (1—m?p) al =b , =0,k=23,.... (25

" __

n
17 2 (1+m2R?)p —m? — R?

Substituting now (25) in (15) and (16), obtain equalities

(R4 m?)(p—m?)
2 (1+m2R?)p—m? — R?’

a’y = a’, =0, k=23,.... (26)
Substituting expressions for af and b} from (25) to the (17) and (16),
obtain

/

J_n_ (Remi)(1-p)

n
T 2(1+m2R¥)p—m?— R’ V=0k=12... (27

Substituting expression for a} from (27) to the (14) with k = 1, obtain

oy MR+ m?)(1 - p)
1T 2(14+m2R%)p—m? — R?’

(28)
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Using (25) rewrite formulae (18) and (14) in the form aj =
—a , =0k=23,..., b,=b,=0k=12 ...

Thus, substituting delivered relations to the formulas (12) and (13),
obtain a solution of the auxiliary A-problem with additional condition
(14) in the form

0(©) = =)y (n+ ™ ) cost Vo = nexplio € Aps,  (29)

m2

v2(C) = w(p)g (7] + T (m*n+n") p> cos V¢ =nexp{if} € Aj g,
(30)
where ¥(p) := (R* + m?)((1 +m*R?)p — m? — R2)71.

4. Solution of A-problem for a system of domains
bounded by confocal ellipses. Now summarizing results of the
latter section we can state the following theorem.

Theorem 1. Let A-Problem posed to the system of domains (G,C:')
bounded by confocal ellipses E1 (inner) and Eo (outer), accordingly, with
semi-azxes ay, by, a; > by, and as, by, as > bs, relations (4) hold.

Then A-Problem for the system of domains (G, é) is equivalent to the
auziliary A-problem if and only if when fulfilled a condition (14), where
vy = Regy and g1 is expressed by the formula (10). Then these problems
are uniquely solvable and the following formulas hold

u(z) =v((), z==z+iy=w((). (31)

A general solution v = (v1,va) of the auziliary A-problem is expressed
by the formulae (29) and (30). Furthermore, the boundary values for any
0 € [0,27] have the form

v1(exp{if}) = va(exp{if}) = v, (0) := %(1 —p)¥(p) (1 +m?) cosb, (32)

va(Rexplif}) = vy, (0) := gzp(p) (R + % - (mQR + ;) p) cos 6.
(33)

A general solution of A-Problem for the system of domains (G, é) n
coordinates (x,y) has a form

ui(z) =¢(p)(1 —plz Vz=z+iy€q, (34)
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us(2) = ¥(p) (x —a'p) Vz=z+iyeq, (35)
where ¥’ = Rew(¢™Y), z = w(C).

5. Effective conductivity. In the considered case z-component
F* of the complete flux can be normalized as follows F* = —magby (see

[6])-
Theorem 2. Under assumptions of Theorem 1 x-component of the
effective conductivity tensor is expressed by the formula

R? +m?

A= Ao P,
eff 2 1(p)m2+R27p(1+m2R2)’

(36)

where Py(p) := 4a2b (R2 R; +<17m4,m2R2+%§> p).

Furthermore, the function (3) is the sum of the following convergent

series
1+ m2R?
)\pfff)\gpl <1+ E <m2+R2) ) (37)

Proof. By the Green’s formula

F’”/\ifff=hf u(z,y) dy + Az (% —j{ )U2(fc7y)dy=
E4 E> E;

= f (Arur(z,y) — Aouz(z,y)) dy + )\2% uz(z,y) dy,
E1 E2

where in contour integrals the orientation is assumed to be opposite to

the clockwise direction. Doing a change of variables (6) with using of the
relations (8), (32) and (33), obtain

27 2
F‘”L’)\ggff = ()\1 —>\2)/071(9) dy(l,@) —I—)\Q/’U’YR(G) dy(]:i’,7 9) =
0 0

2

= "0(0) [ (cos0) a8 (1= )0~ Aa)1 )+

0

m* m2 1
+ A2 (32 — RQ) — Aap (R— R) (m2R+ R)) )
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Substituting equalities (1 — p)(A1 — A2) = 2A2p, fozﬂ(cos 6)2df = 7 to
the last formula, and doing elementary transformations with using of the
expressions of 1(p) and F?, obtain the required equality (36).

Then the equality (37) follows from the obtained formula after
substitution to it the following series expansion

R? 2 1 2 2 k

m2+ R? — p(1 + m?2R?)

which is valid due to the inequalities (24) with k& = 1. The proof is
completed.

The author is grateful to Prof. S.A. Rogosin for the attention to the
work.
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