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On point-local deformations of minimal
extensions of non-serial Dynkin
diagrams

In this paper we study point-local deformations of Tits quadratic forms of
finite graphs. We describe all P -limiting numbers of minimal extensions of
non-serial Dynkin dyagrams in the case when these extensions are neither
usual neither extended Dynkin diagrams.

1. Introduction. Let

f(z) = f(z1, . . . , zn) :=

n∑
i=1

fiiz
2
i +

∑
i<j

fijzizj

be a qudratic form over the field of real numbers R. By the definition from
[1], a quadratic form of the form

f (s)(z, t) = tfssz
2
s +

∑
i ̸=s

fiiz
2
i +

∑
i<j

fijzizj with fss ̸= 0

where t is a parameter running R, is called the local deformation of f(z)
with respect to zs or the s-deformation of f(z).
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Let now fss > 0. Denote by F
(s)
+ the set of all a ∈ R such that the

quadratic form f (s)(z, a) is positive definite, and put F
(s)
− = R \ F

(s)
+ .

Obviously, F
(s)
− ̸= ∅ (since f (s)(z, 0) is not positive definite), and if

F
(s)
− ̸= R then m

(s)
f = supF

(s)
− ∈ F

(s)
− is called the P -limiting number

of f(z) for zs or the s-th P -limiting number of f(z). In the case F
(s)
− = R

we put m
(s)
f = ∞. Concerning general properties of P -limiting numbers

see in [1, 2, 3]. Deformations considered above were called point-local
deformations of f(z) in [3]. This paper is devoted to study of point-local
deformations of the Tits quadratic form of quivers.

2. Minimal extensions of graphs. Elsewhere in the paper all
graphs are finite and non-oriented. Sets of vertices and edges of a graph
X are denoted by X0 and X1, respectively. A graph G = (G0, G1) is said
to be a minimal extension of a graph Q = (Q0, Q1) if G0 = S0 ∪ d with
d /∈ Q0 and G1 = Q1 ∪ (d, j) with j ∈ Q0. The vertex d is said to be the
added vertex of G. In this case we write G = Q ∪ (d, j). If Q is a Dynkin
diagram, the most interesting from the point of view of deformations (as
we can see in the next section) is the case when the graph G is neither
an usual not an extended Dynkin diagram. We call such G an essential
minimal extension of Q.

We consider minimal extensions of the non-serial Dynkin diagtams, i. e.
the diagrams E6, E7, E8:

t t t
t

1 2 3 4 5

6

t t

t t t
t

1 2 3 4 5 6

7

t t t
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t t t
t

1 2 3 4 5 6 7

8

t t t t
Directly from the definitions we have the following statement.

Proposition 1 An extension G = E ∪ (0, j) of a Dynkin diagram E = Ei

(i = 6, 7, 8) is essential if and only if one of the following condition holds:
1) E = E6, j ̸= 1, 5, 6; 2) E = E7, j ̸= 1, 6; 3) E = E8, j ̸= 7.

3. Formulation of the main results. By the definition (see
[4]) the Tits quadratic form of a graph Q = (Q0, Q1) is the following
integral quadratic form:

qQ(z) = qQ(z1, z2, . . . , zn) :=
∑
i∈Q0

z2i −
∑

{i−j}∈Q1

zizj .

It is well-known that qQ(z) is positive definite if and only if the graph Q
is a disjoint union of Dynkin diagrams (see [4]). All P -limiting numbers
of such quadratic forms are describes in [2]; they are rational numbers
belonging to [0, 1).

Note that formally it is more convenient to say about P -limiting
numbers of a graph Q instead of the quadratic form qQ(z). As in [2],
by the P -limiting number of a vertex i ∈ Q0 we mean the i-th P -limiting
number of qQ(z), and we write m

(i)
Q instead of m(i)

qQ(z).
We consider minimal extensions G of Dynkin diagtams. If G is an

extended Dynkin diagram then by Theorem 1 in [3] the P -limiting number
of the added vertex of G is equal to 1. Therefore, the most interesting is
the case of essential extensions. Note that in this case by the same theorem
the P -limiting numbers of the added vertices belong to (1,∞).

Theorem 1 Let G = E6 ∪ (0, j) be an essential minimal extension of the
Dynkin diagram E6. Then the P -limiting number of the added vertex 0 is
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the following:

m
(0)
G =

{
1 2
3 , if j = 2, 4;
3, if j = 3.

Theorem 2 Let G = E7 ∪ (0, j) be an essential minimal extension of the
Dynkin diagram E7. Then the P -limiting number of the added vertex 0 is
the following:

m
(0)
G =



3, if j = 2;
6, if j = 3;
3 3
4 , if j = 4;
2, if j = 5;
1 3
4 , if j = 7.

Theorem 3 Let G = E8 ∪ (0, j) be an essential minimal extension of the
Dynkin diagram E8. Then the P -limiting number of the added vertex 0 is
the following:

m
(0)
G =



2, if j = 1;
7, if j = 2;
15, if j = 3;
10, if j = 4;
6, if j = 5;
3, if j = 6;
4, if j = 8.

4. Proofs of the theorems. It follows from [1] – [3] that the P -
limiting number m(0)

G of a graph G = Ei∪ (0, j) is the root of the equation
(linear with respect to t) |Aj

i (t)| = 0, where Aj
i (t) is the symmetric matrix

of the quadratic form 2q(0)G (z, t). The determinant |Aj
i (t)| is denoted by

Dj
i (t). In particular cases, we have:

A2
6(t) =



2t 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2


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D2
6(t) = 6t− 10;

A3
6(t) =



2t 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2


D3

6(t) = 6t− 18;

A2
7(t) =



2t 0 −1 0 0 0 0 0
0 2 −1 0 0 0 0 0
−1 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 −1
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 2


D2

7(t) = 4t− 12;

A3
7(t) =



2t 0 −1 0 0 0 0 0
0 2 −1 0 0 0 0 0
−1 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 −1
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 2


D3

7(t) = 4t− 24;
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A4
7(t) =



2t 0 −1 0 0 0 0 0
0 2 −1 0 0 0 0 0
−1 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 −1
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 2



D4
7(t) = 4t− 15;

A5
7(t) =



2t 0 −1 0 0 0 0 0
0 2 −1 0 0 0 0 0
−1 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 −1
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 2



D5
7(t) = 4t− 8;

A7
7(t) =



2t 0 −1 0 0 0 0 0
0 2 −1 0 0 0 0 0
−1 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 −1
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 2



D7
7(t) = 4t− 7;
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A1
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D1

8(t) = 2t− 4;

A2
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D2

8(t) = 2t− 14;

A3
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D3

8(t) = 2t− 30;
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A4
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D4

8(t) = 2t− 20;

A5
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D5

8(t) = 2t− 12;

A6
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D6

8(t) = 2t− 6;
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A8
8(t) =



2t −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 −1
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 −1 0 0 0 0 2


D8

8(t) = 2t− 8.
It follows directly from the quantities of determinants of the above

matrices the validity of Theorems 1 – 3.
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