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For locally bounded and differentiable in the sense of Gateaux functions
® given in a three-dimensional commutative harmonic algebra with two-
dimensional radical, we prove the following statement: if the function ¢
domain is convex "in the radical direction" and the difference (1 —(2 belongs
to the radical, the difference ®(¢1) — ®(¢2) belongs also to the radical. As
a result, we prove that locally bounded and differentiable in the sense of
Gateaux functions are also differentiable in the sense of Lorch.

st mokasibHO oOMexkeHux i udepentitoBaux 3a 'aro dpyukiiit ¢, Buzna-
YeHUX y TPUBHMIpDHIN KOMyTaTHBHi rapMOHIUHINi asrebpi 3 1BOBUMIpHAM
PaIuKAJIOM, MU JTOBOJIMMO HACTYITHE TBEP/ZKEHHSI: SIKIIIO 00JIACTh BU3HAYE-
HHsA (yskuil ¢ onykna "y Hanpsamky pajgukana' i pisaung (1 — (2 Haje-
JKUTBb pajuKady, To pizaums @ (¢r) — P((2) Takox HajeKUTh pagukay. Sk
HACJI 0K, JOBOJUTLCS, IO JIOKAJIHLHO oOMexKeHi 1 qudepentiiioBui 3a ['aTo
dyHKIIT € TakoXK audepeHniiitoBauMu 3a JIopxom.

1. Introduction. In the algebra of complex numbers C a function
F: C — C is called monogenic at a point £y € C if there exists the finite

fimit Fle) - F()
. - 0
flgr‘élo £E—& )

and this limit, which is called the derivative of the function at the point &g,
is the same when £ tends to &, by any way. A function, which is monogenic
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at all points of a domain D C C, is called holomorphic in this domain.
Class of holomorphic in D functions coincides with a class of analytic in D
functions which are represented in a certain neighborhood of every point
& € D in the form of the sum of convergent power series (cf. [1]).

Every analytic function F'(£) of the complex variable £ = x+1iy satisfies
the two-dimensional Laplace equation

> & F(E)=F"€) (12 +4%) =0
(22 + ) FO = F"(©) (174 7) =
due to the equality 12 442 = 0 for the unit 1 and the imaginary unit i of
the algebra of complex numbers.

An effectiveness of the analytic function methods in the complex plane
for researching plane potential fields inspires mathematicians to develop
analogous methods for spatial fields.

In the paper [2], analytic functions with values in a commutative
algebra different from the algebra C are used for a construction of solutions
of three-dimensional Laplace equation.

Let A be a commutative Banach algebra of a rank n, 3 < n < oo,
over either the field of real numbers R or the field of complex numbers C.
Let {e1,ea,e3} be a part of the basis of A. P. W. Ketchum [2] has shown
that if linearly independent elements e, eo, e3 € A satisfy the condition

el +e3+e3=0, (2)

then every analytic function ®(¢) of the variable ( = ze; + yeg + zes with
real x,y, z satisfies the three-dimensional Laplace equation

82 82 62 P _ (I)N 2 2 2\ __ 0 3
(fm+pm+ 52 MO=#O G +d+h =0,
where ®”({) can be understood in a certain sense. An algebra A is called
harmonic (cf. [2-4]) if in A there exists a triad of linearly independent
vectors satisfying the equality (2).

It is clear that a characterization of functions satisfying the equalities
(3) has relation to a question: in what sense the derivative is understood
in the algebra A.

It is well-known that there exist various definitions of differentiable
functions given in algebras. Choosing concepts of a differentiable function
and its derivative, it is natural to desire to combine the largest set of
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functions satisfying the equalities (3) with the preservation of the basic
properties of analytic functions of a complex variable for functions of the
mentioned set.

Some properties similar to properties of analytic functions of complex
variable are established for functions differentiable in the sense of Lorch [5]
in an arbitrary convex domain of commutative Banach algebra. In parti-
cular, the integral Cauchy theorem and the integral Cauchy formula, the
Taylor expansion and the Morera theorem are proved in [5] in such a way
as for analytic functions of complex variable. The convexity of domain in
the mentioned results from [5] is withdrawn by E. K. Blum [6].

I. P. Mel'nichenko [7] suggested to consider doubly differentiable in
the sense of Gateaux functions in the equalities (3). Let us note that a
priori the differentiability of the function ® in the sense of Géteaux is a
restriction being weaker than the differentiability of this function in the
sense of Lorch.

To prove analogues of principal theorems of the analytic function theory
in the complex plane, in the papers [8-11] we considered monogenic functi-
ons (i.e., continuous differentiable in the sense of Gateaux functions) in
some harmonic algebras. We developed the following research scheme: at
first, it is useful to obtain a constructive description of monogenic functi-
ons by means of analytic functions of complex variables; hereupon, to show
that monogenic functions have the continuous Gateaux derivatives of all
orders and are differentiable in the sense of Lorch as well; and then to prove
integral theorems and to obtain the Taylor and Laurent expansions. In the
papers [12-14] such a scheme is extended to the case of monogenic functi-
ons in an arbitrary finite-dimensional commutative associative algebra.

The initial point of the mentioned research scheme is the following
statement: for a monogenic function @, the difference ®({1)—P({2) belongs
to a maximal ideal of a commutative finite-dimensional algebra A if the
function ® domain is convex "in the direction" of this ideal and the di-
fference (1 — (2 belongs to the same ideal. For the first time, such a
statement was proved in the papers [8,9] for monogenic functions in a
three-dimensional harmonic algebra A3 with two-dimensional radical.

In this paper, we prove similar statement for given in A3 functions ®
which are differentiable in the sense of Gateaux and locally bounded, i.e.
the assumption from [8,9] on continuity of ® is weakened. Obviously, the
proved statement opens a way to similar generalizations of other results
from [8-14].
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2. A harmonic algebra Aj. Let A3z be a three-dimensional
commutative associative Banach algebra with the unit 1 over the field
of complex numbers C. Let {1, p1, p2} be a basis of the algebra Az with
the multiplication table

pip2=p3 =0, p;=pa.

The algebra Aj is harmonic. A basis {e1, e2, e3} satisfying the equality
(2) is called harmonic. All harmonic bases in Ag are described in Theorem
1.6 [4]. In particular, the basis {e1, 2, e3} is harmonic if decompositions
of its elements with respect to the basis {1, p1, p2} are of the form

€1 = ].,
ez = N1 +n2pi + nap2, (4)
ez = mi + mop1 + Mm3p2,

where ny, and my, for k = 1,2, 3 are complex numbers satisfying the system
of equations

1+n?+m? =0,
ning + Mimse = 0, (5)
xn3 +m2 +2(ninz +mimsz) =0

and the inequality noms—nsms # 0, and moreover, at least one of numbers
in each of the pairs (n1,n2) and (mq,m2) is not equal to zero.

The algebra Az have the unique maximal ideal Z := {A1p1 + A2p2 :
A1, A2 € C} which is also the radical of As.

Consider the linear functional f : Ag — C such that the maximal ideal
T is its kernel and f(1) = 1. It is well known [15, p. 135] that f is also a
multiplicative functional, i.e. the equality f(ab) = f(a)f(b) is fulfilled for
all a,b € Ag.

We use the euclidian norm [ja|| := \/]a1]? + |az2|? + |az|? in the algebra
A3, where a = aieq + ases + azes and aq,aq,a3 € C.

3. Differentiability in the sense of Lorch and in the
sense of Gateaux. Monogenic functions. In what follows,
{e1, 2, e3} is a harmonic basis of the form (4), F3 := {¢ := ze; +yea+zes :
x,y,z € R} is the linear span generated by the vectors e, es, e3 and
(¢ = xep + yes + zes, where z,y,z € R.

Let © be a domain in R3. Associate with  the congruent domain
Q¢ :={¢ =wze1 +yes + ze3 : (z,y,2) € Q} in E5. Associate similarly with
any set @ C R3 the set Q¢ C Es.
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Consider a function ®: 3¢ — A3 and properties of differentiability of
such a function.

The concepts of Fréchet derivative and Géteaux derivative are used
for mappings of linear normalized spaces. These derivatives are defined as
linear operators. In the considered case, they are linear operators from Fs3
into Ag.

For a mapping given in a domain of a commutative Banach algebra,
E.R. Lorch [5] introduced a derivative, which is understood as a function
given in the same domain.

A function ®: Q¢ — A3 is called differentiable in the sense of Lorch
(cf. [5]) in a domain Q¢ C Ej if for every ¢ € Q¢ there exists an element
@’ (¢) € As such that for any € > 0 there exists § > 0 such that for all
h € E3 with ||h]| < ¢ the following inequality fulfilled:

12(C + 1) = 2(C) = hPL ()] < [|Al €. (6)

Obviously, in the inequality (6) the Lorch derivative ®7 (¢) is a function of
the variable ¢, i.e., @} : Qr — Ag.

At the same time, the mapping B¢: E3 — As, which is defined by
the equality Bch := h®’ (¢), is a bounded linear operator. Therefore, a
function ®, which is differentiable in the sense of Lorch in a domain €,
have the Fréchet derivative B in every point ¢ € Q¢ (cf. [15, p. 115]). The
converse is not true, see an example in [15, p. 116].

Using the Gateaux differential, I. P. Mel’nichenko [7] suggested to consi-
der the Gateaux derivative as a function ®,: Q¢ — A3 too.

We say that a function ®: 0 — Ag is called differentiable in the
sense of Gateaur in a domain Q¢ C Ej3 if for every ¢ € ¢ there exists an
element ®(¢) € Ag such that

lim (®(¢+ 6h) —®(()) 6~ = h®L(¢) Vh € Es. (7)
§—0+0
Obviously, the Gdteaux derivative @, (¢) is a function of the variable ¢ and
is a generalization of the classical directional derivative.

The left-hand side of the equality (7) is called the Gdteauz differential
of function ®. It is well-known, in a general case, the Gateaux differential
may fail to be linear with respect to h. But, it is clear, if the Gateaux
derivative @, (¢) exists, the Gateaux differential (7) is a bounded linear
operator with respect to h. At the same time, the converse is not true as
the same example in [15, p. 116] shows.
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It is evident, the definition (6) of the Lorch derivative and the definition
(7) of the Gateaux derivative take into account the existence of noninverti-
ble elements & in the algebra A because the division by elements of algebra
is not used in them in contrast to the classical definition (1) of complex
derivative.

Obviously, if a function ® is differentiable in the sense of Lorch in Q,
then it is also differentiable in the sense of Gateaux, and @/ (¢) = P (()
for all ¢ € Q.. The converse is clearly not true similarly to the fact that
the existence of all directional derivatives at a point does not guarantee a
strong differentiability (or even continuity) of function at that point.

Let us consider a concept of monogenic function ®: Qr — As.

We say that a function ®: 2 — Az is monogenic in a domain 2 C E3
if ® is continuous and differentiable in the sense of Gateaux at every point
of Q(.

We use the notion of monogenic function in the sense of existence of
derived numbers for this function (cf. [1,16]). In the scientific literature the
denomination of monogenic function is used else for functions satisfying
certain conditions similar to the classical Cauchy — Riemann conditions
(cf. [17,18]). Such functions are also called regular functions (cf. [19]) or
hyperholomorphic functions (cf. [20,21]).

In the paper [8] we obtained a constructive description of monogenic
functions by means of analytic functions of complex variables (see also [9]).
As a consequence of such a description, every monogenic in €3¢ function is
differentiable in the sense of Lorch in Q.

To explain it, without loss of generality, we assume that a function
®: Q0 — Aj is monogenic in a convex domain Q¢ (if Q¢ is not convex, it
is possible to consider a restriction of the function ® to any ball lying in
Q¢). Denote D := {& = f(() : ¢ € Q¢}. Then for every monogenic function
®: Q¢ — As there exist complex-valued analytic functions F, Fy, F» in
the domain D such that (see [8,9])

Q) = F<§>+<F1 <f>+<n2y+m2z>F’<s>)m+<F2<f>+<n2y+m2z>F{<f>+

(noy + maz)

2
+ (n3y + maz)F'(€) + 5 F”(f))ﬂz V(eQe, (8)

where £ = x+nj1y+m1 2. The equality (8) can be rewritten in the following
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form (see [9])

1

" 2mi

20 = 5 [(FO+nF@)+ mR0)c-07 0 wea, O

r¢

where I'¢ is an arbitrary closed Jordan rectifiable curve in D, which is
homotopic to the point f({) and embraces this point.

It follows from the equality (9) that the function ® is differentiable in
the sense of Lorch in Q¢. Using the equality (9), we obtain the following
expression for the Lorch n-th derivative, which coincides with the Gateaux
n-th derivative:

| n+1
80 = o [ (FO+nEO+mEm)(€-0) " a Wen.
T¢
Thus, every monogenic function ® satisfies the equalities (3).
Bellow, we show that similar statements are true for functions ® which
are differentiable in the sense of Gateaux and locally bounded in €2, i.e.,
the assumption from [8,9] on continuity of ® will be weakened.

4. Some special properties of locally bounded and
differentiable in the sense of Gateaux functions. Consider
a function ®: ¢ — Ag which is differentiable in the sense of Géteaux
in a domain Q. It is follows from Theorem 1.3 in [4] that the function ®
satisfies the following conditions in €¢:

00 0 00 9P

8731 = %62, E = % €3. (10)

All noninvertible elements in Az belong to the radical Z, which is the
kernel of functional f. Therefore, an element ( = x + yes + zeg € Ej3 is
noninvertible in Aj if and only if the point (x, y, z) belongs to the following
straight line in R3 (see [8,9]):

I {x+yRen1+zRem1: 0,

ylmny + zImmy, = 0.

We say that a domain Q C R? is conver in the direction of the straight
line L if Q contains every segment parallel to L and connecting two points
(1,91, 21), (T2, Y2, 22) € Q. It may be said that the congruent domain ¢
is convex "in the radical direction".
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Let us prove the following statement for a function ®: Q0 — Az which
is differentiable in the sense of Gateaux and locally bounded in a domain
)¢ which is convex "in the radical direction".

Lemma 1. Let a domain Q C R? be convex in the direction of the straight
line L and ®: Q¢ — Az be a locally bounded and differentiable in the sense
of Gdteauz function in the domain Q¢. If (1,(2 € Q¢ and (o — 1 € Le,
then

O(C1) — ®(¢2) € T. (11)

Proof. Inasmuch as f is a linear continuous multiplicative functional,
from the equalities (10) it follows that

H(5)=r(50) e () =1(5) e 2

Consider the decomposition

Q)(C) :VO(x7y>Z)+Vl(x7yaz) p1+V2($,y,Z)p2, (13)

of function ®: Q0 — Az with respect to the basis {1, p1, p2}.
Substituting the expressions (4), (13) into the equalities (12), we get
the following equalities:
Vo G Vo Vo

T TR T (14)

Inasmuch as
&= f(¢) = (r+yReni + zRemq) +i(yImng + zImm,) =: 7 +in, (15)

from the equalities (14) we get

oV oV, oV oV
—Olmnlzi—olmnl, —Olmmlzi—ohnml. (16)

on or an or
It follows from the first equation of the system (5) that, at least one
of the numbers Im nq, Imm; is not equal to zero. Therefore, from (16) we
get the equality
WVo(z,y,2) . Vo(z,y,2)
=1
on or

(17)
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which is fulfilled for all (z,y,z) € Q0.

Let us prove that Vo(x1,y1,21) = Vo(wa,ys,22) for the points
(z1,y1,21), (T2, Y2, 22) € Q such that the segment connecting these points
is parallel to the straight line L.

Let us construct in Q two surfaces () and ¥ satisfying the following
conditions:

e () and ¥ have the same edge;

e the surface @) contains the point (z1,y1, 21) and the surface 3 contai-
ns the point (z2, ya, 22);

e restrictions of the functional f onto the sets )¢ and ¥ are one-to-
one mappings of these sets onto the same domain G of the complex
plane.

As the surface ), we can take an equilateral triangle having the center
(z1,y1,21) and apexes Aj, As, A3, and, in addition, the plane of this tri-
angle is perpendicular to the straight line L.

To construct the surface X, first, consider a triangle with the center
(x2,y2,22) and apexes A}, A5, A, such that the segments A} A}, ALAL,
A} A} are parallel to the segments Ay Ay, AsAs, Ay As, respectively, and,
in addition, the length of A} A} is less than the length of A; As. Inasmuch
as the domain 2 is convex in the direction of the straight line L, the prism
with vertexes A, AS, A5, AY, AY, AY is completely contained in €2, where
the points AY, A, AY are located in the plane of triangle A3 A2 A3 and the
edges A], A" are parallel to L for m =1, 3.

Further, set a triangle with apexes Bj, Bs, Bs such that the point B,,
is located on the segment A/ A! for m = 1,3 and the truncated pyramid
with vertexes Ay, Ay, Az, By, Bo, B3 and lateral edges A,,B,,, m = 1,3, is
completely contained in the domain €.

At last, in the plane of triangle A} A5 A% set a triangle T' with apexes
C1,C5, C3 such that the segments C1Cs, C3C3, C1C3 are parallel to the
segments A} Af, AL AL, A} AL, respectively, and, in addition, the length of
C1Cs5 is less than the length of AjAj. It is evident that the truncated
pyramid with vertexes Bi, By, B3, (C1,C5,C5 and lateral edges B,,Cp,,
m = 1,3, is completely contained in the domain €.

Now, as the surface X, denote the surface formed by the triangle 7" and
the lateral surfaces of mentioned truncated pyramids Ay Ay A3 B1 Bs B3 and
B18233010203.
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For each £ € G define two complex valued functions H; and Hs so that
Hi(€) = f(2(¢)) = Vo(z,y,2) for (z,y,2) € Q,

Hy (&) := f(2(C)) = Volw,y,2) for (z,y,2) €%,

where the correspondence between the points (z,y, z) and £ € G is determi-
ned by the relation (15). The functions Hy, Hy are analytic in the domain
G due to the equality (17) and Theorem 6 [22].

Inasmuch as Hy, Hy are continuous in the closure of domain G and
Hy (&) = Hy(§) on the boundary of G, this identity is fulfilled everywhere
in G. Therefore, Vo (z1,y1,21) = Vo(x2, Yo, 22) and the equalities

F(@(C2) — (1)) = f(@(C2)) — f(®(¢1)) =0,

are fulfilled for (1 := zi1e; + y1ea + z1e3 and (o := xoe; + Yoo + 20€3.
Thus, ®({2) — ®({1) belongs to the kernel Z of functional f. The lemma is
proved.

Now, using Lemma, in such a way as in the papers [8,9], we obtain the
expression (8) or, that is the same, the expression (9) for a locally bounded
and differentiable in the sense of Gateaux function ® : ¢ — Az in the
case where a domain (2 is convex in the direction of the straight line L.

As a result, we obtain the following statement.

Theorem 1. For a function ®: Qr — As given in an arbitrary domain
Q¢ C E3 the following properties are equivalent:

(I) ® is a locally bounded and differentiable in the sense of Gateaux
function in Q¢;

(IT) @ is a monogenic function in Q¢;

(IIT) @ is a differentiable in the sense of Lorch function in Q.

Certainly, the property of function to be locally bounded and differenti-
able in the sense of Gateaux in 3¢ is also equivalent to the various defini-
tions of monogenic function, that are stated in Theorem 1.15 [9].

This research is partially supported by the Ministry of Education and
Science of Ukraine (Project No. 0116U001528).
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