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BuBuaerbca 3B’s30K MiXK CTPYKTYPHUMH BJIQCTHBOCTSIMU TPHUBUMIDHHX
minanre6p anreGpu Ilyankape p(1l,4) i cumerpiiiHO0 peayKui€ piBHSH-
us Eitmepa—Jlarpamka—Bopraa—Iudensaa. OcHoBHY yBary 30cepemzeHo Ha
PEOyKIfAX 32 TPUBAMIDHUMH HifgaJredpaMu, M0 3BOAATH piBHAHHS Kilre-
pa—Jlarpamxa—bBopua—Iadensaa 10 giHifHUX qrdepeHItiaIbHIX PIBHIHD.

Connections between structure properties of three-dimensional subalge-
bras of the Poincaré algebra p(1,4) and Lie reductions of the Euler—
Lagrange—Born-Infeld equation are studied. We concentrate our attenti-
on on Lie reductions with respect to three-dimensional subalgebras that
reduce the Euler-Lagrange—Born-Infeld equation to linear ordinary di-
fferential equations.

1. Introduction. Symmetry reduction is the most universal tool
for finding exact solutions of partial differential equations (PDEs). We
focus our attention on some applications of the classical Lie method
to investigation of PDEs with non-trivial symmetry groups. In 1895,
Lie [19] considered solutions of PDEs that are invariant with respect to
symmetry groups admitted by these PDEs. It turned out that the prob-
lem of symmetry reduction and construction of independent invariant
solutions for a PDE with a non-trivial symmetry group is reduced to the
algebraic problem of classification of inequivalent subalgebras of the Lie
invariance algebra of this equation [23, 24].
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In 1975, Patera, Winternitz, and Zassenhaus [25] proposed a gene-
ral method for describing inequivalent subalgebras of Lie algebras with
nontrivial ideals. It turned out that reduced equations obtained from
inequivalent subalgebras of the same dimension were of different types.
Grundland, Harnad and Winternitz [17] were the first who pointed out
and studied this phenomenon. Further details can be found in [6, 8, 11,
15, 16, 21, 22]. The results obtained cannot be explained using only the
dimension of subalgebras of Lie invariance algebras.

To explain a difference in properties of reduced equations for PDEs
with nontrivial symmetry groups, we investigate the relation between
structure properties of inequivalent subalgebras of the same dimension of
the Lie invariance algebras of those PDEs and properties of the respective
reduced equations. By now, we have studied this relation for the case
of low-dimensional (dim L < 3) inequivalent subalgebras of the same
dimension of the algebra p(1,4), which is the Lie algebra of the Poincaré
group P(1,4), and the eikonal equation [8].

This paper is devoted to the study of the relation between structural
properties of low-dimensional (dim L < 3) inequivalent subalgebras of
the same rank of the algebra p(1,4) and properties of reduced equa-
tions for the Euler-Lagrange-Born-Infeld (ELBI) equation. By now,
this relation has been investigated for three-dimensional subalgebras.
We obtained the following types of reduced equations: identities, linear
ordinary differential equations, nonlinear ordinary differential equations,
partial differential equations. For some subalgebras, it is impossible to
construct ansatzes that reduce the ELBI equation.

We focus our attention on reduction of the ELBI equation to linear
ODEs. More precisely, we only present the results of symmetry reduction
for those types of subalgebras that provide us reductions to linear ODEs.

2. Lie algebra of the Poincaré group P(1,4) and its nonequi-
valent subalgebras. The group P(1,4) is the group of rotations and
translations of the five-dimensional Minkowski space M(1,4). It is the
minimal group that contains, as subgroups, the extended Galilei group
G(1,3) [12] and the Poincaré group P(1,3), which are underlying groups
of classical and relativistic physics, respectively.

The Lie algebra p(1,4) of the group P(1,4) is spanned by 15 basis
elements M, = —M,,, p,v =0,1,2,3,4, and P, p = 0,1, 2, 3,4, which
satisfy the commutation relations

[PM7PV] :Oa [MMIMPO'] :gyoPM—g;me
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[Mp,uv Mpo} = gp,aMyp + gpr;m - gule/o - guaMupa

where goo = —g11 = —g22 = —g33 = —gaa = 1, g = 0, if p # v.
We consider the canonical realization [13, 14] of p(1,4),

p_ 0 0 0 0

0_63?07 e 81‘17 2T 8$2’ 3 8.7337
0

P4:7%, M“,,:"E#nyflﬁupu, T4 = U.

Hereafter we use the following basis elements

G = Moy, Li= M3, Lo=—Myz, Lz= DMy,
Pa:Ma4_MOa7 Ca:Ma4+M0au
XOZ%(P()—P4), Xk:Pk7 X4=%(PQ—|—P4), a,k:1,2,3.

Subalgebras of the Lie algebra p(1,4) were studied up to P(1,4)-con-
jugation in [4, 5, 10], in particular, the classification of subalgebras of
p(1,4) of dimensions up to three was given in [7]. Note that the Lie
algebra of the extended Galilei group G(1,3) is spanned by Ly, Lo, Ls,
P17 PQ, Pg, Xo, )(17 XQ, X3 and X4.

3. Classification of symmetry reductions for the Euler—
Lagrange—Born—Infeld equation. Born-Infeld-like equations arise
in fluid dynamics, theory of continuous medium, general relativity, field
theory, theory of minimal surfaces, nonlinear electrodynamics, etc. [1, 2,
3, 18, 26].

We consider the Euler-Lagrange-Born-Infeld (ELBI) equation

Ou (1 — upu”) + uu"uy, =0, (1)
2
where u = u(x), x = (zo, 21, x2,23) € M(1,3), u, = %, Upy = %,
ut = g"u,, p,v =0,1,2,3, and O is the d’Alembert operator.

In 1984, Fushchych and Serov [13] studied symmetry properties of
the multidimensional nonlinear Euler-Lagrange equation. These results
imply that the Lie invariance algebra of the equation (1) contains, as a
subalgebra, the Poincaré algebra p(1,4).

We carry out Lie symmetry reductions of the ELBI equation to linear

ODEs using subalgebras of p(1,4) of the following types: 3A4;, As @
Ai, Asq, Asa, As3, Aszg. The notation of three-dimensional algebras
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is according to Mubarakzyanov’s classification of low-dimensional Lie
algebras [20].

Among inequivalent subalgebras of the Poincaré algebra p(1,4) listed
in [7], we select only such subalgebras that do reduce the ELBI equation
to linear ODEs with nonlinear solutions since linear solutions are con-
sidered to be trivial. For each of the selected subalgebras, we construct
an ansatz for u, the corresponding reduced equation, its general solution
and the associated family of invariant solutions of the ELBI equation.

Proposition 1. The Lie algebra p(1,4) contains 31 three-dimensional
inequivalent subalgebras of the type 3A;.

1. <P1> ©® <P2> ©® <X3>:
the ansatz is 23 — 23 — 23 — u? = p(w), w = o + u;
the reduced equation is w?¢” — 6wy’ + 6p = 0;
the solution of the reduced equation is ¢(w) = c;w® + cow;

the solution of the ELBI equation is
22—t — a2k —u? = cy(wo +u)® + cazo + u).

2. <P3> (5] <X1> ©® <X2>2
the ansatz is 23 — 23 — u? = p(w), w = 19 + ¥;
the reduced equation is w?¢” — 4wy’ + 4p = 0;
the solution of the reduced equation is ¢(w) = cow® 4 c1w;
the solution of the ELBI equation is

2

22 — 22 —u? = co(wo +u)* + c1(zo + u).

3. <P1> ©® <P2> ©® <P3>:
the ansatz is 23 — 23 — 23 — 2% — u? = p(w), w = 2o + u;
the reduced equation is w?¢” — 8wy’ + 8p = 0;
the solution of the reduced equation is ¢(w) = c;w® + cow;
the solution of the ELBI equation is

22—t — 2k — 2l —u? = ci(wo +u)® + cazo +u).

4. <P1>EB<P2—X22>?(X3>2 .

2
zolefu Ty

the ansatz is =0 — 2= = p(w), w = 20 + ;
the reduced equation is (w+1)°w (w(w + 1)¢”—2(2w + 1)¢’) = 0;
the solution of the reduced equation is
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p(w) = cow? (6w? + 15w + 10) + c1;
the solution of the ELBI equation is
3 — 22 —u B x5
To+u Tro+u+1
+ 15(zo + u) + 10) + ¢1.

2

= co(wo + u)? (6(z0 + u)?

5. <P1> () <P2 — CVXQ,CV ? 0> ) <.P§, — ’)’Xg,’yz?é 0>
the ansatz is 2u + w:iu + wof;+a +
the reduced equation is
(W+7)5w’ (w+a)® [w (w2 +(a+7)w Jroz'y) 0" —2(3w? +2(a+y)w+
ar)(’ — 1] =0;
the solution of the reduced equation is
pw) = aa[zw! + 3(a + 7w’ + 5(0® + day + 7*)w? + zar(a +
Vw4 a2y wd + w + ¢
the solution of the ELBI equation is

T3

Totuty QO(LU), W = To + U;

a? a3 a3

To + u To+u—+ To+uU-+y

= [%(Jco +u)t + %(cH—v)(zo +u)d + é(oz2 + 4oy +7?)
x (2o +u)* + Say(a + ) (zo + u) + 2a°7]

x(xg + u)® 4+ 20 + u + ca.

2u +

6. <P1> D <P2 —aXy,a > 0> (5] <P3>:
the ansatz is 2u + ”ﬁ;ﬂf + x0f2+a
the reduced equation is

(w+ a)’w® (w(w + a)¢” — 2(3w + 2a) (¢’ — 1)) = 0;
the solution of the reduced equation is

(W) =c1(fw? + Sw+ %z)w5 + w + co;

the solution of the ELBI equation is

= p(w), w =z + u;

i + 23 x5

To + U To+ U+«

= (%($0+u)2+%(1‘0—|—u)+ %2) ($0+u)5
+ xo + U+ Co.

2u +

7. (P3—2X0) @ (X1) @ (Xa):
the ansatz is
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%(zo +u)® +x3(0 +u) + 10 —u = p(w), w= (9 + u)? + 4x3;
the reduced equation is 2wp” — ¢’ = 0;

the solution of the reduced equation is

o) = e + e

the solution of the ELBI equation is

(o +u)® + z3(wo +u) + 20 — u

= 02((350 +u)? + 4373)3/2 +c.

- (P3 —2X0) @ (X1) © (X4):

the ansatz is (zo + u)? + 423 = p(w), w = T9;

the reduced equation is ¢” = 0;

the solution of the reduced equation is p(w) = ciw + ¢3;
the solution of the ELBI equation is

u=¢e(crxe — 43 + 02)1/2 —x9, ==l

Proposition 2. The Lie algebra p(1,4) contains 10 three-dimensional
inequivalent subalgebras of the type As & Aq.

1.

<—(G + aX2),X4,0é > O> S <X1>:

the ansatz is o — aln(zg + u) = p(w), w = z3;

the reduced equation is ¢” = 0;

the solution of the reduced equation is p(w) = c1w + ¢3;
the solution of the ELBI equation is

xo —aln(zg + u) = 13 + ca.

Proposition 3. The Lie algebra p(1,4) contains 17 three-dimensional
inequivalent subalgebras of the type As 1.

<2/JX4, P; —2Xo, X5 + puXs,pu > 0>

the ansatz is (wg + u)? + 423 — 4ur; = p(w), W = x9;
the reduced equation is ¢" = 0;

the solution of the reduced equation is p(w) = ciw + ¢3;
the solution of the ELBI equation is

u=c¢ (4uxi + crxe — dxs + 02)1/2 —xg, €==l.

Proposition 4. The Lie algebra p(1,4) contains 3 three-dimensional
nonconjugate subalgebras of the type Aso.
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1. <2ﬂX4,P3, G+ aXi+p6X3,aa>0,6> O>
the ansatz is 1 — aln(xg + u) = p(w), w = x9;
the reduced equation is ¢” = 0;
the solution of the reduced equation is p(w) = ciw + ¢3;
the solution of the ELBI equation is

T, — OZIH(IEO + u) = Cc1X2 + Co.

Proposition 5. The Lie algebra p(1,4) contains five three-dimensional
inequivalent subalgebras of the type Ass.

1. (P53, X4,G + aXy,a > 0):
the ansatz is 1 — aln(xzg + u) = p(w), w = x9;
the reduced equation is ¢” = 0;
the solution of the reduced equation is p(w) = ciw + ¢2;
the solution of the ELBI equation is

Ty — C1T2 — C2
u=exp| ——— | —xp.
«

Proposition 6. The Lie algebra p(1,4) contains 18 three-dimensional
inequivalent subalgebras of the type Asg.

1. <P1 — Xl, P2 — X27 —P3 —|— L3>Z
2 2

Eﬁe angatzéils zif{fl + +2u = p(w), w = xo + u;
e reduced equation is

Wi (w+ 15 w(w + 1)¢"” —2(Bw + 1) (¢’ — 1)] = 0;

the solution of the reduced equation is

(W) = Gw” + 20108 + S1w® + cwt + Gt +w + e

the solution of the ELBI equation is

2
T3
xro+u

x% + x% :r§

To+u+1 x9p+u
Jrgcl(:poJru)‘r’+cl(a:0+u)4+%(x0+u)3+z0+u+02.

+2u = %(mo + u)7 + %cl(xo + u)6

2. <P1, —PQ, — (L3 + an) , o > 0>
the ansatz is 23 — 23 — 23 — u? = p(w), w = 2o + u;
the reduced equation is w?¢” — 6wy’ + 6 = 0;
the solution of the reduced equation is ¢(w) = c;w® + cow;
the solution of the ELBI equation is

xd — 22 — 22 —u? = c1(zo + u)® + oz + u).
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3. <X1, —XQ, P3 — L3>2
the ansatz is 73 — 23 — u? = p(w), w = ¢ + ¥
the reduced equation is w?p” — 4wy’ + 4 = 0;
the solution of the reduced equation is p(w) = ciw? + cow;
the solution of the ELBI equation is

x% — acg —u? = c1(xo —|—u)4 + co(xo + u).

4. <P1,P2,L3 - P3>I
the ansatz is 23 — 23 — 23 — 2% — u? = p(w), w = o + u;
the reduced equation is w?¢” — 8wy’ + 8p = 0;
the solution of the reduced equation is ¢(w) = c;w® + cow;

the solution of the ELBI equation is

w2 —a? — 2% — 23 —u? = ¢ (wo +u)® + ea(zo + u).

5. <X1, —XQ,P?, — L3 — QOéXQ,Oé > 0>
the ansatz is (zo + u)® + 6azs(zg + u) + 60%(z0 — u) = p(w),
w = (29 +u)? + daws;
the reduced equation is 2wp” — ¢’ = 0;
the solution of the reduced equation is ¢(w) = cow®/? + ¢y;
the solution of the ELBI equation is

(zo 4+ u)? + 6aws(zo +u) + 602 (zo — u)

3/2 ‘e

= co((wo + u)® + dazs)

4. Conclusions. In this paper we focused our attention on Lie
reductions of the ELBI equation to linear ODEs. More precisely, we
presented results for such three-dimensional subalgebras of p(1,4) that
give reductions of the ELBI equation to linear ODEs with nonlinear
solutions.

It is known [7] that the Lie algebra p(1,4) contains three-dimensional
inequivalent subalgebras of the following types: 3A4;, Az © A1, As1,
A3,2, 143737 A3)47 A3,6, Ag,% Ag’g, Ag,g. Results of the paper 1mply that
all the above Lie reductions of the ELBI equation to linear ODEs can be
obtained using subalgebras of the types 341, As @ A1, A3z 1, As2, A3
and A3z ¢. Moreover, all the subalgebras considered in the paper are also
subalgebras of the Lie algebra of the extended Galilei group G (1,3).
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