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Âèâ÷à¹òüñÿ çâ'ÿçîê ìiæ ñòðóêòóðíèìè âëàñòèâîñòÿìè òðèâèìiðíèõ
ïiäàëãåáð àëãåáðè Ïóàíêàðå p(1, 4) i ñèìåòðiéíîþ ðåäóêöi¹þ ðiâíÿí-
íÿ Åéëåðà�Ëàãðàíæà�Áîðíà�Iíôåëüäà. Îñíîâíó óâàãó çîñåðåäæåíî íà
ðåäóêöÿõ çà òðèâèìiðíèìè ïiäàëãåáðàìè, ùî çâîäÿòü ðiâíÿííÿ Åéëå-
ðà�Ëàãðàíæà�Áîðíà�Iíôåëüäà äî ëiíiéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü.

Connections between structure properties of three-dimensional subalge-
bras of the Poincar�e algebra p(1, 4) and Lie reductions of the Euler�
Lagrange�Born�Infeld equation are studied. We concentrate our attenti-
on on Lie reductions with respect to three-dimensional subalgebras that
reduce the Euler�Lagrange�Born�Infeld equation to linear ordinary di-
�erential equations.

1. Introduction. Symmetry reduction is the most universal tool
for finding exact solutions of partial differential equations (PDEs). We
focus our attention on some applications of the classical Lie method
to investigation of PDEs with non-trivial symmetry groups. In 1895,
Lie [19] considered solutions of PDEs that are invariant with respect to
symmetry groups admitted by these PDEs. It turned out that the prob-
lem of symmetry reduction and construction of independent invariant
solutions for a PDE with a non-trivial symmetry group is reduced to the
algebraic problem of classification of inequivalent subalgebras of the Lie
invariance algebra of this equation [23, 24].
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In 1975, Patera, Winternitz, and Zassenhaus [25] proposed a gene-
ral method for describing inequivalent subalgebras of Lie algebras with
nontrivial ideals. It turned out that reduced equations obtained from
inequivalent subalgebras of the same dimension were of different types.
Grundland, Harnad and Winternitz [17] were the first who pointed out
and studied this phenomenon. Further details can be found in [6, 8, 11,
15, 16, 21, 22]. The results obtained cannot be explained using only the
dimension of subalgebras of Lie invariance algebras.

To explain a difference in properties of reduced equations for PDEs
with nontrivial symmetry groups, we investigate the relation between
structure properties of inequivalent subalgebras of the same dimension of
the Lie invariance algebras of those PDEs and properties of the respective
reduced equations. By now, we have studied this relation for the case
of low-dimensional (dimL ≤ 3) inequivalent subalgebras of the same
dimension of the algebra p(1, 4), which is the Lie algebra of the Poincaré
group P (1, 4), and the eikonal equation [8].

This paper is devoted to the study of the relation between structural
properties of low-dimensional (dimL ≤ 3) inequivalent subalgebras of
the same rank of the algebra p(1, 4) and properties of reduced equa-
tions for the Euler–Lagrange–Born–Infeld (ELBI) equation. By now,
this relation has been investigated for three-dimensional subalgebras.
We obtained the following types of reduced equations: identities, linear
ordinary differential equations, nonlinear ordinary differential equations,
partial differential equations. For some subalgebras, it is impossible to
construct ansatzes that reduce the ELBI equation.

We focus our attention on reduction of the ELBI equation to linear
ODEs. More precisely, we only present the results of symmetry reduction
for those types of subalgebras that provide us reductions to linear ODEs.

2. Lie algebra of the Poincaré group P (1, 4) and its nonequi-
valent subalgebras. The group P (1, 4) is the group of rotations and
translations of the five-dimensional Minkowski space M(1, 4). It is the
minimal group that contains, as subgroups, the extended Galilei group
G̃(1, 3) [12] and the Poincaré group P (1, 3), which are underlying groups
of classical and relativistic physics, respectively.

The Lie algebra p(1, 4) of the group P (1, 4) is spanned by 15 basis
elements Mµν = −Mνµ, µ, ν = 0, 1, 2, 3, 4, and Pµ, µ = 0, 1, 2, 3, 4, which
satisfy the commutation relations

[Pµ, Pν ] = 0, [Mµν , Pσ] = gνσPµ − gµσPν ,
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[Mµν ,Mρσ] = gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ,

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν.
We consider the canonical realization [13, 14] of p(1, 4),

P0 =
∂

∂x0
, P1 = − ∂

∂x1
, P2 = − ∂

∂x2
, P3 = − ∂

∂x3
,

P4 = − ∂

∂u
, Mµν = xµPν − xνPµ, x4 ≡ u.

Hereafter we use the following basis elements

G = M04, L1 = M23, L2 = −M13, L3 = M12,

Pa = Ma4 −M0a, Ca = Ma4 +M0a,

X0 = 1
2 (P0 − P4), Xk = Pk, X4 = 1

2 (P0 + P4), a, k = 1, 2, 3.

Subalgebras of the Lie algebra p(1, 4) were studied up to P (1, 4)-con-
jugation in [4, 5, 10], in particular, the classification of subalgebras of
p(1, 4) of dimensions up to three was given in [7]. Note that the Lie

algebra of the extended Galilei group G̃(1, 3) is spanned by L1, L2, L3,
P1, P2, P3, X0, X1, X2, X3 and X4.

3. Classification of symmetry reductions for the Euler–
Lagrange–Born–Infeld equation. Born–Infeld-like equations arise
in fluid dynamics, theory of continuous medium, general relativity, field
theory, theory of minimal surfaces, nonlinear electrodynamics, etc. [1, 2,
3, 18, 26].

We consider the Euler–Lagrange–Born–Infeld (ELBI) equation

2u (1− uνuν) + uµuνuµν = 0, (1)

where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµ ≡ ∂u
∂xµ

, uµν ≡ ∂2u
∂xµ∂xν

,

uµ = gµνuν , µ, ν = 0, 1, 2, 3, and 2 is the d’Alembert operator.
In 1984, Fushchych and Serov [13] studied symmetry properties of

the multidimensional nonlinear Euler–Lagrange equation. These results
imply that the Lie invariance algebra of the equation (1) contains, as a
subalgebra, the Poincaré algebra p(1, 4).

We carry out Lie symmetry reductions of the ELBI equation to linear
ODEs using subalgebras of p(1, 4) of the following types: 3A1, A2 ⊕
A1, A3,1, A3,2, A3,3, A3,6. The notation of three-dimensional algebras
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is according to Mubarakzyanov’s classification of low-dimensional Lie
algebras [20].

Among inequivalent subalgebras of the Poincaré algebra p(1, 4) listed
in [7], we select only such subalgebras that do reduce the ELBI equation
to linear ODEs with nonlinear solutions since linear solutions are con-
sidered to be trivial. For each of the selected subalgebras, we construct
an ansatz for u, the corresponding reduced equation, its general solution
and the associated family of invariant solutions of the ELBI equation.

Proposition 1. The Lie algebra p(1, 4) contains 31 three-dimensional
inequivalent subalgebras of the type 3A1.

1. 〈P1〉 ⊕ 〈P2〉 ⊕ 〈X3〉:
the ansatz is x2

0 − x2
1 − x2

2 − u2 = ϕ(ω), ω = x0 + u;
the reduced equation is ω2ϕ′′ − 6ωϕ′ + 6ϕ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω

6 + c2ω;
the solution of the ELBI equation is

x2
0 − x2

1 − x2
2 − u2 = c1(x0 + u)6 + c2(x0 + u).

2. 〈P3〉 ⊕ 〈X1〉 ⊕ 〈X2〉:
the ansatz is x2

0 − x2
3 − u2 = ϕ(ω), ω = x0 + u;

the reduced equation is ω2ϕ′′ − 4ωϕ′ + 4ϕ = 0;
the solution of the reduced equation is ϕ(ω) = c2ω

4 + c1ω;
the solution of the ELBI equation is

x2
0 − x2

3 − u2 = c2(x0 + u)4 + c1(x0 + u).

3. 〈P1〉 ⊕ 〈P2〉 ⊕ 〈P3〉:
the ansatz is x2

0 − x2
1 − x2

2 − x2
3 − u2 = ϕ(ω), ω = x0 + u;

the reduced equation is ω2ϕ′′ − 8ωϕ′ + 8ϕ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω

8 + c2ω;
the solution of the ELBI equation is

x2
0 − x2

1 − x2
2 − x2

3 − u2 = c1(x0 + u)8 + c2(x0 + u).

4. 〈P1〉 ⊕ 〈P2 −X2〉 ⊕ 〈X3〉:
the ansatz is

x2
0−x

2
1−u

2

x0+u − x2
2

x0+u+1 = ϕ(ω), ω = x0 + u;

the reduced equation is (ω+1)5ω5 (ω(ω + 1)ϕ′′−2(2ω + 1)ϕ′) = 0;
the solution of the reduced equation is
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ϕ(ω) = c2ω
3
(
6ω2 + 15ω + 10

)
+ c1;

the solution of the ELBI equation is

x2
0 − x2

1 − u2

x0 + u
− x2

2

x0 + u+ 1
= c2(x0 + u)3

(
6(x0 + u)2

+ 15(x0 + u) + 10
)

+ c1.

5. 〈P1〉 ⊕ 〈P2 − αX2, α > 0〉 ⊕ 〈P3 − γX3, γ 6= 0〉:
the ansatz is 2u+

x2
1

x0+u +
x2

2

x0+u+α +
x2

3

x0+u+γ = ϕ(ω), ω = x0 + u;
the reduced equation is
(ω+γ)5ω5(ω+α)5

[
ω
(
ω2 +(α+γ)ω+αγ

)
ϕ′′−2(3ω2 +2(α+γ)ω+

αγ)(ϕ′ − 1)
]

= 0;
the solution of the reduced equation is
ϕ(ω) = c1

[
1
7ω

4 + 1
3 (α + γ)ω3 + 1

5 (α2 + 4αγ + γ2)ω2 + 1
2αγ(α +

γ)ω + 1
3α

2γ2
]
ω3 + ω + c2;

the solution of the ELBI equation is

2u+
x2

1

x0 + u
+

x2
2

x0 + u+ α
+

x2
3

x0 + u+ γ

= c1
[

1
7 (x0 + u)4 + 1

3 (α+ γ)(x0 + u)3 + 1
5 (α2 + 4αγ + γ2)

× (x0 + u)2 + 1
2αγ(α+ γ)(x0 + u) + 1

3α
2γ2
]

×(x0 + u)3 + x0 + u+ c2.

6. 〈P1〉 ⊕ 〈P2 − αX2, α > 0〉 ⊕ 〈P3〉:
the ansatz is 2u+

x2
1+x2

3

x0+u +
x2

2

x0+u+α = ϕ(ω), ω = x0 + u;
the reduced equation is
(ω + α)5ω5(ω(ω + α)ϕ′′ − 2(3ω + 2α)(ϕ′ − 1)) = 0;
the solution of the reduced equation is

ϕ(ω) = c1
(

1
7ω

2 + α
3ω + α2

5

)
ω5 + ω + c2;

the solution of the ELBI equation is

2u+
x2

1 + x2
3

x0 + u
+

x2
2

x0 + u+ α

= c1

(
1
7 (x0 + u)2 + α

3 (x0 + u) + α2

5

)
(x0 + u)5

+ x0 + u+ c2.

7. 〈P3 − 2X0〉 ⊕ 〈X1〉 ⊕ 〈X2〉:
the ansatz is
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1
6 (x0 + u)3 + x3(x0 + u) + x0 − u = ϕ(ω), ω = (x0 + u)2 + 4x3;
the reduced equation is 2ωϕ′′ − ϕ′ = 0;
the solution of the reduced equation is
ϕ(ω) = c2ω

3/2 + c1;
the solution of the ELBI equation is

1
6 (x0 + u)3 + x3(x0 + u) + x0 − u

= c2
(
(x0 + u)2 + 4x3

)3/2
+ c1.

8. 〈P3 − 2X0〉 ⊕ 〈X1〉 ⊕ 〈X4〉:
the ansatz is (x0 + u)2 + 4x3 = ϕ(ω), ω = x2;
the reduced equation is ϕ′′ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω + c2;
the solution of the ELBI equation is

u = ε(c1x2 − 4x3 + c2)1/2 − x0, ε = ±1.

Proposition 2. The Lie algebra p(1, 4) contains 10 three-dimensional
inequivalent subalgebras of the type A2 ⊕A1.

1. 〈−(G+ αX2), X4, α > 0〉 ⊕ 〈X1〉:
the ansatz is x2 − α ln(x0 + u) = ϕ(ω), ω = x3;
the reduced equation is ϕ′′ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω + c2;
the solution of the ELBI equation is

x2 − α ln(x0 + u) = c1x3 + c2.

Proposition 3. The Lie algebra p(1, 4) contains 17 three-dimensional
inequivalent subalgebras of the type A3,1.

1. 〈2µX4, P3 − 2X0, X1 + µX3, µ > 0〉:
the ansatz is (x0 + u)2 + 4x3 − 4µx1 = ϕ(ω), ω = x2;
the reduced equation is ϕ′′ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω + c2;
the solution of the ELBI equation is

u = ε (4µx1 + c1x2 − 4x3 + c2)
1/2 − x0, ε = ±1.

Proposition 4. The Lie algebra p(1, 4) contains 3 three-dimensional
nonconjugate subalgebras of the type A3,2.
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1. 〈2βX4, P3, G+ αX1 + βX3, α > 0, β > 0〉:
the ansatz is x1 − α ln(x0 + u) = ϕ(ω), ω = x2;
the reduced equation is ϕ′′ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω + c2;
the solution of the ELBI equation is

x1 − α ln(x0 + u) = c1x2 + c2.

Proposition 5. The Lie algebra p(1, 4) contains five three-dimensional
inequivalent subalgebras of the type A3,3.

1. 〈P3, X4, G+ αX1, α > 0〉:
the ansatz is x1 − α ln(x0 + u) = ϕ(ω), ω = x2;
the reduced equation is ϕ′′ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω + c2;
the solution of the ELBI equation is

u = exp

(
x1 − c1x2 − c2

α

)
− x0.

Proposition 6. The Lie algebra p(1, 4) contains 18 three-dimensional
inequivalent subalgebras of the type A3,6.

1. 〈P1 −X1, P2 −X2,−P3 + L3〉:
the ansatz is

x2
1+x2

2

x0+u+1 +
x2

3

x0+u + 2u = ϕ(ω), ω = x0 + u;
the reduced equation is
ω5(ω + 1)5[ω(ω + 1)ϕ′′ − 2(3ω + 1)(ϕ′ − 1)] = 0;
the solution of the reduced equation is
ϕ(ω) = c1

7 ω
7 + 2

3c1ω
6 + 6

5c1ω
5 + c1ω

4 + c1
3 ω

3 + ω + c2;
the solution of the ELBI equation is

x2
1 + x2

2

x0 + u+ 1
+

x2
3

x0 + u
+ 2u = c1

7 (x0 + u)7 + 2
3c1(x0 + u)6

+ 6
5c1(x0 + u)5 + c1(x0 + u)4 + c1

3 (x0 + u)3 + x0 + u+ c2.

2. 〈P1,−P2,− (L3 + αX3) , α > 0〉:
the ansatz is x2

0 − x2
1 − x2

2 − u2 = ϕ(ω), ω = x0 + u;
the reduced equation is ω2ϕ′′ − 6ωϕ′ + 6ϕ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω

6 + c2ω;
the solution of the ELBI equation is

x2
0 − x2

1 − x2
2 − u2 = c1(x0 + u)6 + c2(x0 + u).
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3. 〈X1,−X2, P3 − L3〉:
the ansatz is x2

0 − x2
3 − u2 = ϕ(ω), ω = x0 + u;

the reduced equation is ω2ϕ′′ − 4ωϕ′ + 4ϕ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω

4 + c2ω;
the solution of the ELBI equation is

x2
0 − x2

3 − u2 = c1(x0 + u)4 + c2(x0 + u).

4. 〈P1, P2, L3 − P3〉:
the ansatz is x2

0 − x2
1 − x2

2 − x2
3 − u2 = ϕ(ω), ω = x0 + u;

the reduced equation is ω2ϕ′′ − 8ωϕ′ + 8ϕ = 0;
the solution of the reduced equation is ϕ(ω) = c1ω

8 + c2ω;
the solution of the ELBI equation is

x2
0 − x2

1 − x2
2 − x2

3 − u2 = c1(x0 + u)8 + c2(x0 + u).

5. 〈X1,−X2, P3 − L3 − 2αX0, α > 0〉:
the ansatz is (x0 + u)3 + 6αx3(x0 + u) + 6α2(x0 − u) = ϕ(ω),
ω = (x0 + u)2 + 4αx3;
the reduced equation is 2ωϕ′′ − ϕ′ = 0;
the solution of the reduced equation is ϕ(ω) = c2ω

3/2 + c1;
the solution of the ELBI equation is

(x0 + u)3 + 6αx3(x0 + u) + 6α2(x0 − u)

= c2
(
(x0 + u)2 + 4αx3

)3/2
+ c1.

4. Conclusions. In this paper we focused our attention on Lie
reductions of the ELBI equation to linear ODEs. More precisely, we
presented results for such three-dimensional subalgebras of p(1, 4) that
give reductions of the ELBI equation to linear ODEs with nonlinear
solutions.

It is known [7] that the Lie algebra p(1, 4) contains three-dimensional
inequivalent subalgebras of the following types: 3A1, A2 ⊕ A1, A3,1,
A3,2, A3,3, A3,4, A3,6, Aa3,7, A3,8, A3,9. Results of the paper imply that
all the above Lie reductions of the ELBI equation to linear ODEs can be
obtained using subalgebras of the types 3A1, A2 ⊕ A1, A3,1, A3,2, A3,3

and A3,6. Moreover, all the subalgebras considered in the paper are also

subalgebras of the Lie algebra of the extended Galilei group G̃(1, 3).
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