V. Sharko, D. Gol'cov

Semi-free R^{1} action and Bott map

1 Introduction

Let M^{n} be a compact closed manifold of dimension at least 3 . We study the R^{1}-Bott functions on M^{n}. Separately investigated R^{1}-invariant Bott functions on $M^{2 n}$ with a semi-free circle action which has finitely many fixed points. The aim of this paper is to find exact values of minimal numbers of singular circles of some indices of R^{1}-invariant Bott functions on $M^{2 n}$.

Closely related to R^{1}-Bott function on a manifold M^{n} is a more flexible object, the decomposition of round handle of M^{n}. In its turn, to study the round handles decomposition of M^{n} we use a diagram, i.e. a graph which carries the information about the handles.

$2 \quad R^{1}$-Bott maps

Let M^{n} be a smooth manifold and $f: M^{n} \rightarrow \mathbf{R}^{1}$ smooth function or $f: M^{n} \rightarrow \mathbb{R}^{1}$ non-homotopy to zero a smooth map. Suppose that $x \in M^{n}$ one of its critical points of f. In neighborhood U of critical point x in both cases the map f can be viewed as a function with values in \mathbf{R}. Consider the Hessian $\Gamma_{x}(f): T_{x} \times T_{x} \rightarrow \mathbf{R}$ at this point. Recall that the index of the Hessian is called the maximum dimension of T_{x}, where $\Gamma_{x}(f)$ is negative definite. The index of $\Gamma_{x}(f)$ is called the index of the critical point x, and the corank of $\Gamma_{x}(f)$ is called the corank of x. Suppose that the set of critical points of f forms a disjoint union of smooth submanifolds K_{j}^{i} whose their dimensions do not exceed $n-1$. A connected critical submanifold $K_{j_{0}}^{i_{0}}$ is called non-degenerate if the

Hessian is non-degenerate on subspaces orthogonal to $K_{j_{0}}^{i_{0}}$ (i.e. has corank equal to $n-i_{0}$) at each point $x \in K_{j_{0}}^{i_{0}}$.

Definition 2.1. A mapping $f: M^{n} \rightarrow \mathbb{R}^{1}$ is called a Bott map if all of its critical points form nondegenerate critical submanifolds which do not intersect the boundary of M^{n}.

Consider the following important example of Bott map:
Definition 2.2. A mapping $f: M^{n} \rightarrow \mathbb{R}^{1}$ is called an R^{1}-Bott map if all of its critical points form nondegenerate critical circles.

Note that an R^{1}-Bott map do not exist on any smooth manifold (see Theorem 2.3).

Theorem 2.1. Let M^{n} be a smooth closed manifold and suppose that on M^{n} there is R^{1} - Bott map $f: M^{n} \rightarrow \mathbb{R}^{1}$. Denote by $\gamma \subset M^{n}$ its critical circle and let $f(\gamma)=a$. Then there is interval $(a-\varepsilon, a+\varepsilon) \subset \mathbb{R}^{1}$ and a system of coordinates in a neighborhood of γ of one of the following types:

1) Trivial $\nu: S^{1} \times D^{n-1}(\varepsilon) \rightarrow M^{n}$; where $D^{n-1}(\varepsilon)$, a disc of radius ε, $\nu\left(R^{1} \times 0\right)=\gamma$, and $f(\nu(\theta, x))=a-x_{1}^{2}-\ldots-x_{\lambda}^{2}+x_{\lambda+1}^{2}+\ldots+x_{n-1}^{2}$, for $(\theta, x) \in S^{1} \times D^{n-1}(\varepsilon)$.
2) Twisted $\tau:\left([0,1] \times D^{n-1}(\varepsilon) / \sim\right) \rightarrow M^{n}$, where τ is a smooth embedding such that $(\tau([0,1]) \times 0 / \sim)=\gamma$ and $f(\tau(t, x))=a-x_{1}^{2}-$ $\ldots-x_{\lambda}^{2}+x_{\lambda+1}^{2}+\ldots+x_{n-1}^{2}$, for $(t, x) \in\left(\tau:[0,1] \times D^{n-1}(\varepsilon) / \sim\right)$. Here $\left([0,1] \times D^{n-1}(\varepsilon) / \sim\right)$ is diffeomorphic to $S^{1} \times D^{n-1}(\varepsilon)$ by identifying $0 \times D^{n-1}(\varepsilon)$ and $1 \times D^{n-1}(\varepsilon)$ by the mapping: $\left(0, x_{1}, \ldots, x_{\lambda}, x_{\lambda+1}, \ldots, x_{n-1}\right) \leftrightarrow\left(1,-x_{1}, \ldots, x_{\lambda},-x_{\lambda+1}, \ldots, x_{n-1}\right)$.

The number λ is called the index of the critical circle γ.
Let M^{n} be a smooth manifold, and $f: M^{n} \rightarrow R^{1}$ an R^{1}-Bott map. Each nice R^{1}-Bott map defines a filtration on manifold $M^{n}: \mathbb{M}_{0}(f) \subset$ $\mathbb{M}_{1}(f) \subset \ldots \subset \mathbb{M}_{n-1}(f) \subset M^{n}$. The existence of a nice R^{1}-Bott map from manifold M^{n} into the circle is equivalent to existance of a R^{1}-round handle decomposition on the manifold M^{n}. We recall some necessary definitions.

Definition 2.3. We define an n-dimensional round handle R_{λ} of index λ by $M_{\lambda}=M^{1} \times D^{\lambda} \times D^{n-\lambda-1}$, where D^{i} is a disc of dimension i.
Define twisted n-dimensional round handle $T M_{\lambda}$ of index $\lambda(0<\lambda<$ $n-1)$ by $T M_{\lambda}=[0,1] \times D^{\lambda} \times D^{n-\lambda-1} / \sim$, where identification is given by the map: $\left(0, x_{1}, \ldots, x_{\lambda}, x_{\lambda+1}, \ldots, x_{n-1}\right) \leftrightarrow\left(1,-x_{1}, \ldots, x_{\lambda},-x_{\lambda+1}, \ldots, x_{n-1}\right)$.

Definition 2.4. We say that the manifold M_{λ}^{n} is obtained from a smooth manifold M^{n} by attaching a round handle of index λ if $M_{\lambda}^{n}=M^{n} \bigcup_{\varphi} S^{1} \times D^{\lambda} \times D^{n-\lambda-1}$, where $\varphi: R^{1} \times \partial D^{\lambda} \times D^{n-\lambda-1} \longrightarrow \partial N^{n}$ is a smooth embedding.

Manifold M_{λ}^{n} is obtained from a smooth manifold M^{n} by gluing a twisted round handles of index λ, if $M_{\lambda}^{n}=N^{n} \bigcup_{\varphi}[0,1] \times D^{\lambda} \times D^{n-\lambda-1} / \sim$, where $\varphi:\left([0,1] \times \partial D^{\lambda} \times D^{n-\lambda-1} / \sim\right) \rightarrow M^{n}$ is a smooth embedding.

Definition 2.5. The M^{1} - round handle decomposition on the closed manifold M^{n} is called a filtration

$$
M^{n-1} \times[0, \varepsilon] \bigcup M_{0}^{n}(R) \subset M_{1}^{n}(R) \subset \ldots \subset M_{n-1}^{n}(R)=M^{n}
$$

where M^{n-1} is a closed submanifold of M^{n}, the manifold $M_{i}^{n}(R)$ obtained from the manifold $M_{i-1}^{n}(R)$ by gluing round and twisted round handles of index i.

In what follows we recall the relationship between S^{1} and the decomposition by round handles ([11]).

Theorem 2.2. Let M^{n} be a smooth closed manifold. The following two conditions are equivalent:

1) On the manifold M^{n} there is a nice R^{1}-Bott map with the critical circles $\gamma_{1}, \ldots, \gamma_{k}$ of index $\lambda_{1}, \ldots, \lambda_{k}$ with trivial coordinate systems and critical circles $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{l}$ of indices μ_{1}, \ldots, μ_{l} with twisted coordinate systems.
2) Manifold M^{n} admits a decomposition by round handles consisting of round handles $R_{\lambda_{1}}, \ldots, R_{\lambda_{k}}$ of index $\lambda_{1}, \ldots, \lambda_{k}$ and of twisted round handles
$T R_{\mu_{1}}, \ldots, T R_{\mu_{l}}$ of indices μ_{1}, \ldots, μ_{l} so that the critical circle γ_{i} corresponds to a round handle $R_{\lambda_{i}}(1 \leq i \leq k)$, and the critical circle $\tilde{\gamma}_{j}$ corresponds to a twisted round handle $T R_{\mu_{j}}(1 \leq j \leq l)$.

Thus each nice R^{1}-Bott map from manifold M^{n} into the \mathbb{R}^{1} generates a round handle decomposition of M^{n} and vice versa.

We are interested in conditions when an R^{1}-Bott map on M^{n} has the property that all of its critical circles have trivial coordinate system. We recall the necessary facts from an [4].

Lemma 2.1. Let M^{n} be a smooth closed manifold, $f: M^{n} \rightarrow \mathbb{R}^{1}$ an R^{1}-Bott map, and c its critical value. Suppose $\varepsilon>0$, and that on the interval $[c-\varepsilon, c+\varepsilon]$ there are no other critical values. Assume that on the surface level $f^{-1}(c)$ there are critical circles $\gamma_{1}, \ldots, \gamma_{k}$ of indices $\lambda_{1}, \ldots, \lambda_{k}$ with trivial coordinate systems and there are critical circles $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{l}$ of indices μ_{1}, \ldots, μ_{l} with twisted coordinate systems, then the homology groups $H_{*}\left(f^{-1}[c-\varepsilon, c+\varepsilon], f^{-1}(c-\varepsilon), \mathbf{Z}\right)$ is generated exactly by the handles which correspond to the critical circles
$\gamma_{1}, \ldots, \gamma_{k}, \tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{l}$. Each circle γ_{i} generates two subgroups that are isomorphic to \mathbf{Z}, a direct product of the homology group $H_{\lambda_{i}}\left(f^{-1}[c-\varepsilon, c+\right.$ $\left.\varepsilon], f^{-1}(c-\varepsilon), \mathbf{Z}\right)$, and the other in the homology group $H_{\lambda_{i+1}}\left(f^{-1}[c-\right.$ $\left.\varepsilon, c+\varepsilon], f^{-1}(c-\varepsilon), \mathbf{Z}\right)$. Each circle $\tilde{\gamma}_{j}$ generates a subgroup \mathbf{Z}_{2} which is direct product in a group $H_{\mu_{j}}\left(f^{-1}[c-\varepsilon, c+\varepsilon], f^{-1}(c-\varepsilon), \mathbf{Z}\right)$.
Corolary 2.1. Let M^{n} be a smooth closed manifold, $f: M^{n} \rightarrow \mathbb{R}^{1}$ an S^{1}-Bott map, and c_{1}, \ldots, c_{k} its critical values. Suppose $\varepsilon_{i}>0(1 \leq i \leq k)$ such that the interval $\left[c_{i}-\varepsilon_{i}, c_{i}+\varepsilon_{i}\right]$ has no other critical values. Then on a level surface $f^{-1}\left(c_{i}\right)$ there are only critical circles with trivial coordinate systems if and only if the nonzero homology groups $H_{*}\left(f^{-1}\left[c_{i}-\varepsilon_{i}, c_{i}+\right.\right.$ $\left.\left.\varepsilon_{i}\right], f^{-1}\left(c_{i}-\varepsilon_{i}\right), \mathbf{Z}\right)$ are free Abelian groups.

Thus we have a homological criterion when R^{1}-Bott map do not have critical circle with twisted coordinate systems.

In the next section, we give another class of R^{1}-Bott map which do not possess the critical circle with twisted coordinate systems.
Definition 2.6. Let M^{n} be a smooth closed manifold. The number $\chi_{i}\left(M^{n}\right)=\mu\left(H_{i}\left(M^{n}, \mathbf{Z}\right)\right)-\mu\left(H_{i-1}\left(M^{n}, \mathbf{Z}\right)\right)+\ldots+(-1)^{i+1} \mu\left(H_{0}\left(M^{n}, \mathbf{Z}\right)\right)$ is called the i-th Euler characteristic of M^{n}, where $\mu(H)$ is a minimal number of generators H.

Definition 2.7. A dimension λ of closed manifold M^{n} is called singular if $H_{\lambda}\left(M^{n}, \mathbf{Z}\right)$ is a nonzero finite group distinct from $\mathbf{Z}_{2} \oplus \ldots \oplus \mathbf{Z}_{2}$ and $\chi_{\lambda-1}\left(M^{n}\right)=\chi_{\lambda+1}\left(M^{n}\right)=0$.
Definition 2.8. Let M^{n} be a smooth closed manifold. A round handle decomposition is called quasiminimal, if one of the following holds:

1) the number of round handles of index i equals to $\rho\left(\chi_{i}\left(M^{n}\right)\right)+\varepsilon_{i}$, where $\varepsilon_{i}=0$, if dimension $i+1$ is nonsingular and $\varepsilon_{i}=1$, if dimension $i+1$ is singular,
2) the number of round handles of index i equals to $\rho\left(\chi_{i}\left(M^{n}\right)\right)$, if dimension $i+1$ is singular, then there is only one handle of index $i+2$.

In both cases, the number of round handles of index $i+1$ equals to $\rho\left(\chi_{i+1}\left(M^{n}\right)\right)$. A round handle decomposition is called minimal, if number of round handles of index i equals to $\rho\left(\chi_{i}\left(M^{n}\right)\right)$ for all i.

Using the decomposition of manifold on handles and the diagram technique, we can easily prove the following fact [4].

Proposition 2.1. Let M^{n} be a smooth closed simply connected manifold $(n>5)$. Then M^{n} admits a quasiminimal decomposition into round handles. If manifold M^{n} have not singular dimensions, then M^{n} admits a minimal decomposition into round handles.

Definition 2.9. Let the manifold M^{n} admits R^{1}-Bott function, then R^{1}-Morse number $M_{i}^{R^{1}}\left(M^{n}\right)$ of index i is the minimum number of singular circles of index i taken over all R^{1}-Bott functions on M^{n}.

Lemma 2.2. Let on a closed manifold M^{n} exist a smoth function $f: M^{n} \rightarrow \mathbb{R}$ such that each connected component of the singular set Σ_{f} of f is either a nondegenerate critical point $p_{i}(i=1, \ldots, k)$ or a nondegenerate critical circle $S_{j}^{1}(j=1, \ldots, l)$. Then the Euler characteristic of the manifold M^{n} is equal to $\chi\left(M^{n}\right)=\sum_{i=1}^{k}(-1)^{\text {index }\left(p_{i}\right)}$.

Proof. It is known that for any Morse function on the manifold M^{n} $g: M^{n} \rightarrow \mathbb{R}$ with critical points $p_{i}(i=1, \ldots, q)$ there is the formula $\chi\left(M^{n}\right)=\sum_{i=1}^{q}(-1)^{\text {index }\left(p_{i}\right)}$. By small perturbation of the function f any non-degenerate critical circle S_{j}^{1} of index λ can be replaced by nondegenerate critical points of idexes λ and $\lambda+1$ [1]. Therefore the contribution in the formula of Euler characteristic this critical points will not give and we obtain the desired formula.

3 Manifolds with free R^{1}-action

Let on smooth manifold M^{n} there is smooth free circle action. Then of course the set M^{n} / S^{1} is a manifold and natural projection $p: M^{n} \rightarrow$
M^{n} / S^{1} is fibre bundle. Any smooth R^{1}-invariant map $f: M^{n} \rightarrow \mathbb{R}^{1}$ from the manifold M^{n} into the circle \mathbb{R}^{1} is called an R^{1}-invariant round Bott map if each connected component of the singular set Σ_{f} is non-degenerate critical circle.

It is clear that if f be a R^{1}-invariant round Bott map from the manifold M^{n} then it projection $\pi_{*}(f): M^{n} / S^{1} \rightarrow \mathbb{R}^{1}$, is a Morse map. And conversaly, if $g: M^{n} / S^{1} \rightarrow \mathbb{R}^{1}$ be a Morse map from the manifold M^{n} / S^{1} then $\pi_{*}^{-1}(g)=g \circ \pi: M^{n} \rightarrow \mathbb{S}^{1}$ is R^{1}-invariant round Bott map from the manifold M^{n}. The critical point of the index λ of the map g correspond to critical circle of the index λ of the map $\pi_{*}^{-1}(g)$.

Definition 3.1. Let on smooth manifold M^{n} there are smooth free circle action $\theta: M^{n} \times S^{1} \rightarrow M^{n}$ and R^{1}-invariant round Bott map $f: M^{n} \rightarrow \mathbb{S}^{1}$. For the triple $\left(M^{n}, \theta, f\right) R^{1}$-equivariant round Morse-
Bott number of index $i, \mathfrak{M}_{i}^{e q S^{1}}\left(M^{n}, \theta, f\right)$ is the minimum number of singular circles of index i taken over all homotopic to $f R^{1}$-invariant round Bott map from M^{n} into \mathbb{R}^{1}.

Definition 3.2. Let on smooth manifold M^{n} there is Morse maps f : $M^{n} \rightarrow \mathbb{R}^{1}$. For the couple $\left(M^{n}, f\right)$ Morse-Novikov number of index $i, \mathfrak{M}_{i}\left(M^{n}, f\right)$ is the minimum number of critical points of index i taken over all homotopic to f Morse maps from M^{n} into \mathbb{R}^{1}.

It is clear that there is following fact.
Corolary 3.1. Let on smooth manifold M^{n} there is smooth free circle action $\theta: M^{n} \times R^{1} \rightarrow M^{n}$ and let $p: M^{n} \rightarrow M^{n} / R^{1}$ is natural projection. Suppose that $f: M^{n} / R^{1} \rightarrow \mathbb{R}^{1}$ be a Morse map. Then $\mathfrak{M}_{i}^{e q R^{1}}\left(M^{n}, \theta, f\right.$. $p)=\mathfrak{M}_{i}\left(M^{n} / S^{1}, f\right)$.

Definition 3.3. Let on smooth manifold M^{n} there is smooth free circle action $\theta: M^{n} \times R^{1} \rightarrow M^{n}$. Then this circle action is minimal if there exist R^{1}-invariant round Bott map $f: M^{n} \rightarrow \mathbb{R}^{1}$ such that $\mathfrak{M}_{i}^{e q R^{1}}\left(M^{n}, \theta, f\right)=\mathfrak{M}_{i}^{S^{1}}\left(M^{n}, f\right)$ for all i.

Suppose that on smooth compact manifold $M^{n}(n>6)$ there is smooth free circle action $\theta: M^{n} \times R^{1} \rightarrow M^{n}$ and let $p: M^{n} \rightarrow M^{n} / R^{1}$ is natural projection. Suppose that $\pi_{1}\left(M^{n}\right) \approx \pi_{1}\left(M^{n} / R^{1}\right) \approx \mathbf{Z}$. Then from from results of Novikov [2] it follows that

$$
\mathfrak{M}_{i}\left(M^{n} / R^{1}, f\right)=\mu\left(H_{i}\left(M^{n} / R^{1}, Z\right)\right)+\mu\left(\operatorname{TorsH}_{i-1}\left(M^{n} / R^{1}, Z\right)\right)
$$

for any non-homotopy to zero Morse $\operatorname{map} f: M^{n} / R^{1} \rightarrow \mathbb{R}^{1}$. Therefore corollary 3.1 implies that $\mathfrak{M}_{i}^{e q R^{1}}\left(M^{n}, \theta, f \cdot p\right)=\mathfrak{M}_{i}^{R^{1}}\left(M^{n}, f\right)$
Theorem 3.1. Let on smooth compact manifold $M^{n}(n>6)$ there is smooth free circle action. Suppose that $\pi_{1}\left(M^{n}\right) \approx \pi_{1}\left(M^{n} / S^{1}\right) \approx \mathbf{Z}$. Then this circle action is minimal if and only if

$$
\mu\left(H_{i}\left(M^{n} / S^{1}, Z\right)+\mu\left(\operatorname{Tors}_{i-1}\left(M^{n} / S^{1}, Z\right)=\rho\left(\chi_{i}\left(M^{n}\right)\right)\right.\right.
$$

for all i.
Proof. Necessary. Suppose that on M^{n} there is minimal smooth free circle action. If $n>6$ from results of Novikov [2] it follows that Morse number in dimension i of the manifold M^{n} / R^{1} is equal $\mathfrak{M}_{i}\left(M^{n} / S^{1}\right)=\mu\left(H_{i}\left(M^{n} / R^{1}, Z\right)\right)+\mu\left(\operatorname{TorsH}_{i-1}\left(M^{n} / R^{1}, Z\right)\right)$. There is equality
$\mathfrak{M}_{i}\left(M^{n} / S^{1}\right)=\mathfrak{M}_{i}^{e q R^{1}}\left(M^{n}\right)$. Because of the condition of minimal free circle action there is equality $\mathfrak{M}_{i}\left(M^{n} / R^{1}\right)=\mathfrak{M}_{i}^{e q R^{1}}\left(M^{n}\right)=\mathfrak{M}_{i}^{R^{1}}\left(M^{n}\right)=$ $\rho\left(\chi_{i}\left(M^{n}\right)\right)$.

Sufficiently. Consider on manifold M^{n} / R^{1} Morse function with the number of critical points of index i equal
$M_{i}\left(M^{n} / R^{1}\right)=\mu\left(H_{i}\left(M^{n} / R^{1}, Z\right)\right)+\mu\left(\operatorname{TorsH}_{i-1}\left(M^{n} / R^{1}, Z\right)\right)$. By the construction and condition of the theorem we have the equalities $M_{i}\left(M^{n} / S^{1}\right)=M_{i}^{e q R^{1}}\left(M^{n}\right)=\rho\left(\chi_{i}\left(M^{n}\right)\right)$. But $M_{i}^{R^{1}}\left(M^{n}\right)=\rho\left(\chi_{i}\left(M^{n}\right)\right)$ and therefore free action of R^{1} is minimal.

4 Manifolds with semi-free R^{1}-action

Let $M^{2 n}$ be a closed smooth manifold with semi-free R^{1}-action which has only isolated fixed points. It is known that every isolated fixed point p of a semi-free R^{1}-action has the following important property: near such a point the action is equivalent to a certain linear $S^{1}=S O(2)$-action on $\mathbb{R}^{2 n}$. More precisely, for every isolated fixed point p there exist an open invariant neighborhood U of p and a diffeomorphism h from U to an open unit disk D in \mathbb{C}^{n} centered at origin such that h is conjugate to the given S^{1}-action on U to the S^{1}-action on \mathbb{C}^{n} with weight $(1, \ldots, 1)$. We will use both complex, $\left(z_{1}, \ldots, z_{n}\right)$, and real coordinates $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ on $\mathbb{C}^{n}=\mathbb{R}^{2 n}$ with $z_{j}=x_{j}+\sqrt{-1} y_{j}$. The pair (U, h) will be called a standard chart at the point p. Let $f: M^{2 n} \rightarrow \mathbb{R}^{1}$ be a smooth R^{1} invariant map from the manifold $M^{2 n}$ into the circle \mathbb{R}^{1}. Denote by Σ_{f}
the set of singular points of the map f. It is clear that the set of isolated singular points $\Sigma_{f}\left(p_{j}\right) \subset \Sigma_{f}$ of f coincides with the set of fixed points $M^{R^{1}}$.

For a nondegenerate critical point p_{j} there exist a standard chart $\left(U_{j}, h_{j}\right)$ such that on U_{j} the map f is given by the following formula:

$$
f=f(p)-\left|z_{1}\right|^{2}-\ldots-\left|z_{\lambda_{j}}\right|^{2}+\left|z_{\lambda_{j}+1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}
$$

Notice that the index of nondegenerate critical point p_{j} is always even.
Denote by $\Sigma_{f}\left(R^{1}\right)$ the set singular points of the function f that are disconnected union of circles. These circles will be called singular.

A circle $\left.s \in \Sigma f_{(} R^{1}\right)$ is called nondegenerate if there is an R^{1}-invariant neighborhood U of s on which R^{1} acts freely and such that the point $\pi(s)$ is nondegenerate for the function $\pi_{*}(f): U / R^{1} \rightarrow \mathbb{R}$, induced on U / R^{1} by the natural map $\pi: U \rightarrow U / R^{1}$. An invariant version of Morse lemma says that there exist an R^{1}-invariant neighborhood U of the circle s and coordinates $\left(x_{1}, \ldots, x_{2 n-1}\right)$ on U / R^{1} such that the function $\pi_{*}(f)$ has the following presentation:

$$
\pi_{*}(f)=\pi_{*}(f(\pi(s)))-x_{1}^{2}-\ldots-x_{\lambda}^{2}+x_{\lambda+1}^{2}+\ldots+x_{2 n-1}^{2}
$$

By definition λ is the index of singular circle s.
Definition 4.1. A smooth S^{1}-invariant function $f: M^{2 n} \rightarrow \mathbb{R}$ on a manifold $M^{2 n}$ with a semi-free circle action which has isolated fixed points is called : R_{*}^{1}-Bott function if each connected component of the singular set Σ_{f} is either a nondegenerate fixed point or a nondegenerate critical circle.

Theorem 4.1. Assume that $M^{2 n}$ is the closed manifold with a smooth semi-free circle action which has isolated fixed points p_{1}, \ldots, p_{k}. Let for any fixed point p_{j} consider standard chart $\left(U_{j}, h_{j}\right)$ and function

$$
f_{j}=f_{j}\left(p_{i}\right)-\left|z_{1}\right|^{2}-\ldots-\left|z_{\lambda_{j}}\right|^{2}+\left|z_{\lambda_{j}+1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}
$$

on U_{j}, where λ_{j} is an arbitrary integer from $0,1, \ldots, n$.
Then there exist an R^{1}-invariant R_{*}^{1}-Bott function f on $M^{2 n}$ such that $f=f_{j}$ on U_{j}.

Proof. Consider on U_{j} the function f_{j}. Let $\pi_{*}\left(f_{j}\right): U_{j} / S^{1} \rightarrow \mathbb{R}$, continuos function induced on U_{j} / R^{1} by the natural map $\pi: U_{j} \rightarrow$ U_{j} / R^{1}. It is clear that function $\pi_{*}\left(f_{j}\right)$ is smooth on manifold ($U_{j} \backslash$
$\left.p_{j}\right) / R^{1}$. Denote by g smooth extension functions $\pi_{*}\left(f_{j}\right)$ on $M^{2 n} / R^{1}$. By small deformation of the function g, that is fixed on U_{j} / R^{1}, we shall find function g_{1} on $M^{2 n} / R^{1}$ such that g_{1} equal $\pi_{*}\left(f_{j}\right)$ on U_{j} / R^{1} and g_{1} have only non-degenerate critical points on $M^{2 n} \backslash \bigcup\left(U_{j} / R^{1}\right)$. Then the function $f=g_{1} \circ p$ satisfy conditions of the theorem.

Theorem 4.2. The number of fixed points of any smooth semi-free circle action on $M^{2 n}$ with isolated fixed points is always even and equal to the Euler characteristic of the manifold $M^{2 n}$.
$f_{1}=f_{1}\left(p_{1}\right)+\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}$ on U_{1} and $f_{j}=f_{j}\left(p_{i}\right)-\left|z_{1}\right|^{2}-\ldots-\left|z_{n}\right|^{2}$
on $U_{j}(2 \leq j \leq l)$ and extend such functions to S^{1}-invariant Bott function f on manifold $M^{2 n} \backslash U_{1} \bigcup U_{2} \bigcup \ldots \bigcup U_{l}$. We suppose that U_{j} is diffeomorfic to open disk $D^{2 n}$ for any j. Consider manifold $V^{2 n}=W^{2 n} \backslash \bigcup U_{j}$. The boudary of manifod $V^{2 n}$ is disconnected union of spheres $S^{2 n-1}$. By construction of manifold $V^{2 n}$ there is free cirle action. The boundary of the manifold $V^{2 n} / S^{1}$ is disconnected union of complex projective spaces $\mathbb{C P}^{n-1}$. If the number of the boundary components of the manifold $V^{2 n} / S^{1}$ is odd then we glue pairwise boundary components and obtain compact smoth manifold with with boundary $\mathbb{C} \mathbb{P}^{n-1}$. From the well known fact that the manifold $\mathbb{C P}^{n-1}$ is non-cobordant to zero it follows that the number of fixed points of any smooth semi-free circle action on $M^{2 n}$ with isolated fixed points is even. The value of the Euler characteristic $\chi\left(M^{2 n}\right)=2 k$ is follow from Lemma 3.4.

Definition 4.2. Let f be an R^{1}-invariant S_{*}^{1}-Bott function for smooth semi-free circle action with isolated fixed points $p_{1}, \ldots, p_{2 k}$ on a closed manifold $M^{2 n}$. Denote by λ_{j} the index of a critical point p_{j} of the function f. The state of the function f is the collection of numbers $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 k}\right)$, which we will be denoted by $S t_{f}(\Lambda)$. It is clear that all numbers λ_{j} are even and $\left(0 \leq \lambda_{j} \leq 2 n\right)$.

Remark 4.1. It follows from Theorem 4.2 that for every smooth semifree circle action on a closed manifold $M^{2 n}$ with isolated fixed points $p_{1}, \ldots, p_{2 k}$ and any collection even numbers $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 k}\right)$, such that $0 \leq \lambda_{j} \leq 2 n$ there exists an R^{1}-invariant R_{*}^{1}-Bott functions f on $M^{2 n}$ with state $S t_{f}(\Lambda)$.
Definition 4.3. Let $M^{2 n}$ be a closed smooth manifold with smooth semifree circle action which has finitely many fixed points $p_{1}, \ldots, p_{2 k}$. Fix any collection even numbers $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 k}\right)$, such that $0 \leq \lambda_{j} \leq 2 n$.

The R^{1}-Morse number $\mathcal{M}_{i}^{R^{1}}\left(M^{2 n}, S t(\Lambda)\right)$ of index i is the minimum numbers of singular circles of index i taken over all R^{1}-invariant R_{*}^{1}-Bott functions f on $M^{2 n}$ with state $S t_{f}(\Lambda)$.

There is an unsolved problem: for a manifold $M^{2 n}$ with a semi-free circle action which has finitely many fixed points find exact values of numbers $\mathcal{M}_{i}^{R^{1}}\left(M^{2 n}, S t(\Lambda)\right)$.

5 About R^{1}-equivariant Morse numbers $\mathcal{M}_{i}^{R^{1}}\left(M^{2 n}, S t(\Lambda)\right)$

Let $M^{2 n}$ be a compact closed manifold of dimension with semifree circle action which has finite many fixed points $p_{1},, \ldots, p_{2 k}$. Denote by $\pi: M^{2 n} \rightarrow M^{2 n} / R^{1}$ canonical map. The set $M^{2 n} / R^{1}$ is manifold with singular points $\pi\left(p_{1}\right), \ldots, \pi\left(p_{2 k}\right)$. It is clear that neighborhood of any singular point is cone over $\mathbb{C P}^{n-1}$. If $f: M^{2 n} \rightarrow \mathbb{R}$ be a smooth R^{1}-invariant R_{*}^{1}-Bott function on the manifold $M^{2 n}$, then $\pi_{*}(f): M^{2 n} / R^{1} \rightarrow \mathbb{R}$ is continuos function such that on smooth noncompact manifold $N^{2 n-1}=M^{2 n} / R^{1} \backslash \bigcup_{j=1}^{2 k} \pi\left(p_{j}\right)$ it is Morse function.

Choose an invariant neighborhood U_{i} of the point p_{j} diffeomorphic to the open unit disc $D^{2 n} \subset \mathbb{C}^{n}$ and set $U=\bigcup_{j=1}^{2 k} U_{j}$. Consider compact manifold $V^{2 n-1}=\left(M^{2 n} \backslash U\right) / R^{1}$, its boundary is a disconnected union of complex projective spaces $\partial V^{2 n-1}=\mathbb{C P}_{1}^{n-1} \cup \ldots \cup \mathbb{C P}_{2 k}^{n-1}$. It is clear that manifold $V^{2 n-1} \backslash \partial V^{2 n-1}$ and manifold $N^{2 n-1}$ are diffeomorphic. We use a manifold $V^{2 n-1}$ for the study of R^{1}-invariant R_{*}^{1}-Bott functions on the manifold $M^{2 n}$ with states $S t(\Lambda)=(0, \ldots, 0,2 n, \ldots, 2 n)$. Let $\partial_{0} V^{2 n-1}$ be a part of boundary of $V^{2 n-1}$ consist from r component $\mathbb{C} P^{2 n-2}(2 k-1 \geq r \geq 1)$, and $\partial_{1} V^{2 n-1}=\partial V^{2 n-1} \backslash \partial_{0} V^{2 n-1}$. On the manifold with boundary $V^{2 n-1}$ constructed Morse function $f: V \rightarrow[0,1]$, such that $f^{-1}(0)=\partial_{0} V^{2 n-1}$ and $f^{-1}(1)=\partial_{1} V^{2 n}$. Using the function f we constructed on the manifold $M^{2 n} R^{1}$-equivariant R_{*}^{1}-Bott function F with the state $S t(0, \ldots, 0,2 n, \ldots, 2 n)$, such that restriction $\pi_{*}(F)$ on V coinside with f. Therefore Morse number of index $i M_{i}\left(V^{2 n-1}, \partial_{0} V^{2 n-1}\right)$ of manifold with boundary $V^{2 n-1}$ is equal $\mathcal{M}_{i}^{S^{1}}\left(M^{2 n}, S t(0, \ldots, 0,2 n, \ldots, 2 n)\right.$.

Theorem 5.1. Let $M^{2 n}(2 n>8)$ be a closed smooth manifold admits a smooth semi-free circle action with isolated fixed points $p_{1}, \ldots, p_{2 k}$. Then
for the manifold $M^{2 n}$ with the state $S t(\Lambda)=(0, \ldots, 0,2 n, \ldots, 2 n)$

$$
\begin{aligned}
& \mathcal{M}_{i}^{R^{1}}\left(M^{2 n}, S t(\Lambda)=\mathbb{D}^{i}\left(V^{2 n-1}, \partial_{0} V^{2 n-1}\right)+\widehat{S}_{(2)}^{i}\left(V^{2 n-1}, \partial_{0} V^{2 n-1}\right)+\right. \\
& \quad+\widehat{S}_{(2)}^{i+1}\left(V^{2 n-1}, \partial_{0} V^{2 n-1}\right)+\operatorname{dim}_{N(Z[\pi])}\left(H_{(2)}^{i}\left(V^{2 n-1}, \partial_{0} V^{2 n-1}\right)\right)
\end{aligned}
$$

for $3 \leq i \leq 2 n-4$.
Proof. Choose an invariant neighborhood U_{i} of the point p_{i} diffeomorphic to the unit disc $D^{2 n} \subset \mathbb{C}^{n}$ and set $U=\bigcup_{i} U_{i}$. Let f_{i} be a function on U_{i} equal

$$
f_{i}=\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}, \text { and } f_{j} \text { on } U_{j} \text { equal } f_{j}=1-\left|z_{1}\right|^{2}-\ldots-\left|z_{n}\right|^{2}
$$

for $i=1, \ldots, r, j=r+1, \ldots, 2 k-r$. Consider the manifold $V^{2 n}=$ $\left(M^{2 n} \backslash U\right) / R^{1}$. It is clear that its boundary is a disconnected union of complex projective spaces $\partial V^{2 n}=\mathbb{C} P_{1}^{2 n-2} \cup \ldots \cup \mathbb{C} P_{2 k}^{2 n-2}$.

Let $\partial_{0} V^{2 n}$ be a part of boundary of $V^{2 n}$ consist from r component $\mathbb{C} P^{2 n-2}$, that corespondent U_{i} and $\partial_{1} V^{2 n}$ be a part of boundary consist from component $\mathbb{C} P^{2 n-2}$, that corespondent U_{j}. On manifold $V^{2 n}=\left(M^{2 n} \backslash U\right) / R^{1}$ constructed Morse function $f: V \rightarrow[0,1]$, such that $f^{-1}(0)=\partial_{0} V^{2 n}$ and $f^{-1}(1)=\partial_{1} V^{2 n}$. Using the function f we constructed on manifold $M^{2 n} S^{1}$-equivariant S_{*}^{1}-Bott function F with the state $S t(\Lambda)=(0, \ldots, 0,2 n, \ldots, 2 n)$, such that restriction F on U_{i} coinside with f_{i}, restriction F on U_{j} coinside with f_{j} and restriction $\pi_{*}(F)$ on V coinside with f. Therefore Morse number of cobordism V equal $\mathcal{M}_{R^{1}}^{\lambda}\left(M^{2 n}, S t(\Lambda)\right)$ In the paper [12] there is value of Morse number of a cobordism.

Literature.

1. Barden D. Simply-connected five manifolds // Annals of Math., 1965, 82 n3, p. 365-385.
2. Novikov S.P. Multivalued functions and functionals. An analogue of the Morse theory, Soviet Math. Dokl., 1981, 24 , p. 222-226.
3. Asimov D. Round handle and non-singular Morse-Smale flows // Ann. Math. - 1975, 102 n.1, p. 41-54.
4. Bott R. Lecture on Morse theory, old and new / / Bull. Amer.Math. Sos. - 1982, 7 n.2, p. 331-358.
5. Franks J. Morse-Smale flows and homotopy theory // Topology - 1979, 18 n2, p. 199-215.
6. Franks J. Homology and Dynamical systems // CMBS Regional Conf. Series in Math.,n.49, Amer. Math. Sos., Providence, R.I., 1982.
7. Kogan M. Existence of perfect Morse functions on spaces with semi- free circle action // Journal of Symplectic Geometry - 2003, 1. n3, p. 829-850.
8. Smale S. On the structure of Manifolds // Amer. J. Math. 1962, 84 n.3, p. 387 - 399.
9. Miyoshi S. Foliated round surgery of codimension-one foliated manifolds// Topology - 1983, 21 n.3, p. 245-262.
10. Morgan J.W. Non-singular Morse-Smale flows on 3-dimensional manifolds// Topology - 1979, 18 n.1, p. $41-53$.
11. Newhuse S., Peixoto M. There is a simple arc joining any two Morse-Smale Flows // Asterisque - 1976, 31, p. 16-41.
12. Sharko V.V. New L^{2}-invariants of chain complexes and applications, C^{*}-algebra and elliptic theory / / Trends Math.- Basel, Switzerland: Birkhauser, -P. 291-321.2006
13. Thurston W. Existence of codimension-one foliation// Ann. Math. - 1976, 104 n.2, p. 249-268.
