V. Sharko, D. Gol'cov

Semi-free R^1 action and Bott map

1 Introduction

Let M^n be a compact closed manifold of dimension at least 3. We study the R^1 -Bott functions on M^n . Separately investigated R^1 -invariant Bott functions on M^{2n} with a semi-free circle action which has finitely many fixed points. The aim of this paper is to find exact values of minimal numbers of singular circles of some indices of R^1 -invariant Bott functions on M^{2n} .

Closely related to R^1 -Bott function on a manifold M^n is a more flexible object, the decomposition of round handle of M^n . In its turn, to study the round handles decomposition of M^n we use a diagram, i.e. a graph which carries the information about the handles.

2 R^1 -Bott maps

Let M^n be a smooth manifold and $f:M^n\to \mathbf{R^1}$ smooth function or $f:M^n\to \mathbb{R}^1$ non-homotopy to zero a smooth map. Suppose that $x\in M^n$ one of its critical points of f. In neighborhood U of critical point x in both cases the map f can be viewed as a function with values in \mathbf{R} . Consider the Hessian $\Gamma_x(f):T_x\times T_x\to \mathbf{R}$ at this point. Recall that the index of the Hessian is called the maximum dimension of T_x , where $\Gamma_x(f)$ is negative definite. The index of $\Gamma_x(f)$ is called the index of the critical point x, and the corank of $\Gamma_x(f)$ is called the corank of x. Suppose that the set of critical points of x forms a disjoint union of smooth submanifolds X^i_j whose their dimensions do not exceed x and x connected critical submanifold x is called x non-degenerate if the

© V. Sharko, D. Gol'cov, 2013

Hessian is non-degenerate on subspaces orthogonal to $K_{j_0}^{i_0}$ (i.e. has corank equal to $n-i_0$) at each point $x \in K_{j_0}^{i_0}$.

Definition 2.1. A mapping $f: M^n \to \mathbb{R}^1$ is called a Bott map if all of its critical points form nondegenerate critical submanifolds which do not intersect the boundary of M^n .

Consider the following important example of Bott map:

Definition 2.2. A mapping $f: M^n \to \mathbb{R}^1$ is called an R^1 -Bott map if all of its critical points form nondegenerate critical circles.

Note that an \mathbb{R}^1 -Bott map do not exist on any smooth manifold (see Theorem 2.3).

Theorem 2.1. Let M^n be a smooth closed manifold and suppose that on M^n there is R^1 - Bott map $f: M^n \to \mathbb{R}^1$. Denote by $\gamma \subset M^n$ its critical circle and let $f(\gamma) = a$. Then there is interval $(a - \varepsilon, a + \varepsilon) \subset \mathbb{R}^1$ and a system of coordinates in a neighborhood of γ of one of the following types:

- 1) Trivial $\nu: S^1 \times D^{n-1}(\varepsilon) \to M^n$; where $D^{n-1}(\varepsilon)$, a disc of radius ε , $\nu(R^1 \times 0) = \gamma$, and $f(\nu(\theta, x)) = a x_1^2 \dots x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_{n-1}^2$, for $(\theta, x) \in S^1 \times D^{n-1}(\varepsilon)$.
- 2) Twisted $\tau: ([0,1] \times D^{n-1}(\varepsilon)/\sim) \to M^n$, where τ is a smooth embedding such that $(\tau([0,1]) \times 0/\sim) = \gamma$ and $f(\tau(t,x)) = a x_1^2 \dots x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_{n-1}^2$, for $(t,x) \in (\tau:[0,1] \times D^{n-1}(\varepsilon)/\sim)$. Here $([0,1] \times D^{n-1}(\varepsilon)/\sim)$ is diffeomorphic to $S^1 \times D^{n-1}(\varepsilon)$ by identifying $0 \times D^{n-1}(\varepsilon)$ and $1 \times D^{n-1}(\varepsilon)$ by the mapping: $(0,x_1,\dots,x_{\lambda},x_{\lambda+1},\dots,x_{n-1}) \leftrightarrow (1,-x_1,\dots,x_{\lambda},-x_{\lambda+1},\dots,x_{n-1})$.

The number λ is called the index of the critical circle γ .

Let M^n be a smooth manifold, and $f:M^n\to R^1$ an R^1 -Bott map. Each nice R^1 -Bott map defines a filtration on manifold $M^n:\mathbb{M}_0(f)\subset\mathbb{M}_1(f)\subset\ldots\subset\mathbb{M}_{n-1}(f)\subset M^n$. The existence of a nice R^1 -Bott map from manifold M^n into the circle is equivalent to existance of a R^1 -round handle decomposition on the manifold M^n . We recall some necessary definitions.

Definition 2.3. We define an n-dimensional round handle R_{λ} of index λ by $M_{\lambda} = M^1 \times D^{\lambda} \times D^{n-\lambda-1}$, where D^i is a disc of dimension i. Define twisted n-dimensional round handle TM_{λ} of index λ ($0 < \lambda < n-1$) by $TM_{\lambda} = [0,1] \times D^{\lambda} \times D^{n-\lambda-1} / \sim$, where identification is given by the map: $(0, x_1, ..., x_{\lambda}, x_{\lambda+1}, ..., x_{n-1}) \leftrightarrow (1, -x_1, ..., x_{\lambda}, -x_{\lambda+1}, ..., x_{n-1})$.

Definition 2.4. We say that the manifold M_{λ}^n is obtained from a smooth manifold M^n by attaching a round handle of index λ if $M_{\lambda}^n = M^n \bigcup_{\varphi} S^1 \times D^{\lambda} \times D^{n-\lambda-1}$, where $\varphi : R^1 \times \partial D^{\lambda} \times D^{n-\lambda-1} \longrightarrow \partial N^n$ is a smooth embedding.

Manifold M_{λ}^n is obtained from a smooth manifold M^n by gluing a twisted round handles of index λ , if $M_{\lambda}^n = N^n \bigcup_{\varphi} [0,1] \times D^{\lambda} \times D^{n-\lambda-1} / \sim$, where $\varphi : ([0,1] \times \partial D^{\lambda} \times D^{n-\lambda-1} / \sim) \to M^n$ is a smooth embedding.

Definition 2.5. The M^1 - round handle decomposition on the closed manifold M^n is called a filtration

$$M^{n-1}\times [0,\varepsilon]\bigcup M^n_0(R)\subset M^n_1(R)\subset \ldots \subset M^n_{n-1}(R)=M^n,$$

where M^{n-1} is a closed submanifold of M^n , the manifold $M_i^n(R)$ obtained from the manifold $M_{i-1}^n(R)$ by gluing round and twisted round handles of index i.

In what follows we recall the relationship between S^1 and the decomposition by round handles ([11]).

Theorem 2.2. Let M^n be a smooth closed manifold. The following two conditions are equivalent:

- 1) On the manifold M^n there is a nice R^1 -Bott map with the critical circles $\gamma_1, ..., \gamma_k$ of index $\lambda_1, ..., \lambda_k$ with trivial coordinate systems and critical circles $\tilde{\gamma}_1, ..., \tilde{\gamma}_l$ of indices $\mu_1, ..., \mu_l$ with twisted coordinate systems.
- 2) Manifold M^n admits a decomposition by round handles consisting of round handles $R_{\lambda_1}, ..., R_{\lambda_k}$ of index $\lambda_1, ..., \lambda_k$ and of twisted round handles

 $TR_{\mu_1},...,TR_{\mu_l}$ of indices $\mu_1,...,\mu_l$ so that the critical circle γ_i corresponds to a round handle R_{λ_i} $(1 \le i \le k)$, and the critical circle $\tilde{\gamma}_j$ corresponds to a twisted round handle TR_{μ_j} $(1 \le j \le l)$.

Thus each nice R^1 -Bott map from manifold M^n into the \mathbb{R}^1 generates a round handle decomposition of M^n and vice versa.

We are interested in conditions when an \mathbb{R}^1 -Bott map on \mathbb{M}^n has the property that all of its critical circles have trivial coordinate system. We recall the necessary facts from an [4].

Lemma 2.1. Let M^n be a smooth closed manifold, $f: M^n \to \mathbb{R}^1$ an R^1 -Bott map, and c its critical value. Suppose $\varepsilon > 0$, and that on the interval $[c-\varepsilon, c+\varepsilon]$ there are no other critical values. Assume that on the surface level $f^{-1}(c)$ there are critical circles $\gamma_1, ..., \gamma_k$ of indices $\lambda_1, ..., \lambda_k$ with trivial coordinate systems and there are critical circles $\tilde{\gamma}_1, ..., \tilde{\gamma}_l$ of indices $\mu_1, ..., \mu_l$ with twisted coordinate systems, then the homology groups $H_*(f^{-1}[c-\varepsilon, c+\varepsilon], f^{-1}(c-\varepsilon), \mathbf{Z})$ is generated exactly by the handles which correspond to the critical circles

 $\gamma_1,...,\gamma_k,\tilde{\gamma}_1,...,\tilde{\gamma}_l$. Each circle γ_i generates two subgroups that are isomorphic to \mathbf{Z} , a direct product of the homology group $H_{\lambda_i}(f^{-1}[c-\varepsilon,c+\varepsilon],f^{-1}(c-\varepsilon),\mathbf{Z})$, and the other in the homology group $H_{\lambda_{i+1}}(f^{-1}[c-\varepsilon,c+\varepsilon],f^{-1}(c-\varepsilon),\mathbf{Z})$. Each circle $\tilde{\gamma}_j$ generates a subgroup \mathbf{Z}_2 which is direct product in a group $H_{\mu_j}(f^{-1}[c-\varepsilon,c+\varepsilon],f^{-1}(c-\varepsilon),\mathbf{Z})$.

Corolary 2.1. Let M^n be a smooth closed manifold, $f: M^n \to \mathbb{R}^1$ an S^1 -Bott map, and $c_1, ..., c_k$ its critical values. Suppose $\varepsilon_i > 0 (1 \le i \le k)$ such that the interval $[c_i - \varepsilon_i, c_i + \varepsilon_i]$ has no other critical values. Then on a level surface $f^{-1}(c_i)$ there are only critical circles with trivial coordinate systems if and only if the nonzero homology groups $H_*(f^{-1}[c_i - \varepsilon_i, c_i + \varepsilon_i], f^{-1}(c_i - \varepsilon_i), \mathbf{Z})$ are free Abelian groups.

Thus we have a homological criterion when R^1 -Bott map do not have critical circle with twisted coordinate systems.

In the next section, we give another class of R^1 -Bott map which do not possess the critical circle with twisted coordinate systems.

Definition 2.6. Let M^n be a smooth closed manifold. The number $\chi_i(M^n) = \mu(H_i(M^n, \mathbf{Z})) - \mu(H_{i-1}(M^n, \mathbf{Z})) + \ldots + (-1)^{i+1}\mu(H_0(M^n, \mathbf{Z}))$ is called the *i*-th Euler characteristic of M^n , where $\mu(H)$ is a minimal number of generators H.

Definition 2.7. A dimension λ of closed manifold M^n is called singular if $H_{\lambda}(M^n, \mathbf{Z})$ is a nonzero finite group distinct from $\mathbf{Z}_2 \oplus ... \oplus \mathbf{Z}_2$ and $\chi_{\lambda-1}(M^n) = \chi_{\lambda+1}(M^n) = 0$.

Definition 2.8. Let M^n be a smooth closed manifold. A round handle decomposition is called quasiminimal, if one of the following holds:

- 1) the number of round handles of index i equals to $\rho(\chi_i(M^n)) + \varepsilon_i$, where $\varepsilon_i = 0$, if dimension i + 1 is nonsingular and $\varepsilon_i = 1$, if dimension i + 1 is singular,
- 2) the number of round handles of index i equals to $\rho(\chi_i(M^n))$, if dimension i+1 is singular, then there is only one handle of index i+2.

In both cases, the number of round handles of index i + 1 equals to $\rho(\chi_{i+1}(M^n))$. A round handle decomposition is called minimal, if number of round handles of index i equals to $\rho(\chi_i(M^n))$ for all i.

Using the decomposition of manifold on handles and the diagram technique, we can easily prove the following fact [4].

Proposition 2.1. Let M^n be a smooth closed simply connected manifold (n > 5). Then M^n admits a quasiminimal decomposition into round handles. If manifold M^n have not singular dimensions, then M^n admits a minimal decomposition into round handles.

Definition 2.9. Let the manifold M^n admits R^1 -Bott function, then R^1 -Morse number $M_i^{R^1}(M^n)$ of index i is the minimum number of singular circles of index i taken over all R^1 -Bott functions on M^n .

Lemma 2.2. Let on a closed manifold M^n exist a smoth function $f: M^n \to \mathbb{R}$ such that each connected component of the singular set Σ_f of f is either a nondegenerate critical point $p_i(i=1,...,k)$ or a nondegenerate critical circle $S^1_j(j=1,...,l)$. Then the Euler characteristic of the manifold M^n is equal to $\chi(M^n) = \sum_{i=1}^k (-1)^{index(p_i)}$.

Proof. It is known that for any Morse function on the manifold M^n $g: M^n \to \mathbb{R}$ with critical points $p_i(i=1,...,q)$ there is the formula $\chi(M^n) = \sum_{i=1}^q (-1)^{index(p_i)}$. By small perturbation of the function f any non-degenerate critical circle S^1_j of index λ can be replaced by non-degenerate critical points of idexes λ and $\lambda+1$ [1]. Therefore the contribution in the formula of Euler characteristic this critical points will not give and we obtain the desired formula. \square

3 Manifolds with free R^1 -action

Let on smooth manifold M^n there is smooth free circle action. Then of course the set M^n/S^1 is a manifold and natural projection $p:M^n\to$

 M^n/S^1 is fibre bundle. Any smooth R^1 -invariant map $f: M^n \to \mathbb{R}^1$ from the manifold M^n into the circle \mathbb{R}^1 is called an R^1 -invariant round Bott map if each connected component of the singular set Σ_f is non-degenerate critical circle.

It is clear that if f be a R^1 -invariant round Bott map from the manifold M^n then it projection $\pi_*(f): M^n/S^1 \to \mathbb{R}^1$, is a Morse map. And conversaly, if $g: M^n/S^1 \to \mathbb{R}^1$ be a Morse map from the manifold M^n/S^1 then $\pi_*^{-1}(g) = g \circ \pi: M^n \to \mathbb{S}^1$ is R^1 -invariant round Bott map from the manifold M^n . The critical point of the index λ of the map g correspond to critical circle of the index λ of the map $\pi_*^{-1}(g)$.

Definition 3.1. Let on smooth manifold M^n there are smooth free circle action $\theta: M^n \times S^1 \to M^n$ and R^1 -invariant round Bott map $f: M^n \to \mathbb{S}^1$. For the triple (M^n, θ, f) R^1 -equivariant round Morse-Bott number of index i, $\mathfrak{M}_i^{eqS^1}(M^n, \theta, f)$ is the minimum number of singular circles of index i taken over all homotopic to f R^1 -invariant round Bott map from M^n into \mathbb{R}^1 .

Definition 3.2. Let on smooth manifold M^n there is Morse maps $f: M^n \to \mathbb{R}^1$. For the couple (M^n, f) Morse-Novikov number of index $i, \mathfrak{M}_i(M^n, f)$ is the minimum number of critical points of index i taken over all homotopic to f Morse maps from M^n into \mathbb{R}^1 .

It is clear that there is following fact.

Corolary 3.1. Let on smooth manifold M^n there is smooth free circle action $\theta: M^n \times R^1 \to M^n$ and let $p: M^n \to M^n/R^1$ is natural projection. Suppose that $f: M^n/R^1 \to \mathbb{R}^1$ be a Morse map. Then $\mathfrak{M}_i^{eqR^1}(M^n, \theta, f \cdot p) = \mathfrak{M}_i(M^n/S^1, f)$.

Definition 3.3. Let on smooth manifold M^n there is smooth free circle action $\theta: M^n \times R^1 \to M^n$. Then this circle action is **minimal** if there exist R^1 -invariant round Bott map $f: M^n \to \mathbb{R}^1$ such that $\mathfrak{M}_i^{eqR^1}(M^n, \theta, f) = \mathfrak{M}_i^{S^1}(M^n, f)$ for all i.

Suppose that on smooth compact manifold $M^n(n > 6)$ there is smooth free circle action $\theta: M^n \times R^1 \to M^n$ and let $p: M^n \to M^n/R^1$ is natural projection. Suppose that $\pi_1(M^n) \approx \pi_1(M^n/R^1) \approx \mathbf{Z}$. Then from from results of Novikov [2] it follows that

$$\mathfrak{M}_{i}(M^{n}/R^{1},f) = \mu(H_{i}(M^{n}/R^{1},Z)) + \mu(TorsH_{i-1}(M^{n}/R^{1},Z))$$

for any non-homotopy to zero Morse map $f: M^n/R^1 \to \mathbb{R}^1$. Therefore corollary 3.1 implies that $\mathfrak{M}_i^{eqR^1}(M^n, \theta, f \cdot p) = \mathfrak{M}_i^{R^1}(M^n, f)$

Theorem 3.1. Let on smooth compact manifold $M^n(n > 6)$ there is smooth free circle action. Suppose that $\pi_1(M^n) \approx \pi_1(M^n/S^1) \approx \mathbf{Z}$. Then this circle action is minimal if and only if

$$\mu(H_i(M^n/S^1, Z) + \mu(TorsH_{i-1}(M^n/S^1, Z) = \rho(\chi_i(M^n)))$$

for all i.

Proof. Necessary. Suppose that on M^n there is minimal smooth free circle action. If n > 6 from results of Novikov [2] it follows that Morse number in dimension i of the manifold M^n/R^1 is equal $\mathfrak{M}_{i}(M^n/S^1) = \mu(H_{i}(M^n/R^1/Z)) + \mu(TorsH_{i+1}(M^n/R^1/Z))$. There is

 $\mathfrak{M}_i(M^n/S^1) = \mu(H_i(M^n/R^1,Z)) + \mu(TorsH_{i-1}(M^n/R^1,Z)).$ There is equality

 $\mathfrak{M}_i(M^n/S^1) = \mathfrak{M}_i^{eqR^1}(M^n)$. Because of the condition of minimal free circle action there is equality $\mathfrak{M}_i(M^n/R^1) = \mathfrak{M}_i^{eqR^1}(M^n) = \mathfrak{M}_i^{R^1}(M^n) = \rho(\chi_i(M^n))$.

Sufficiently. Consider on manifold M^n/R^1 Morse function with the number of critical points of index i equal

 $M_i(M^n/R^1) = \mu(H_i(M^n/R^1,Z)) + \mu(TorsH_{i-1}(M^n/R^1,Z))$. By the construction and condition of the theorem we have the equalities

 $M_i(M^n/S^1) = M_i^{eqR^1}(M^n) = \rho(\chi_i(M^n))$. But $M_i^{R^1}(M^n) = \rho(\chi_i(M^n))$ and therefore free action of R^1 is minimal. \square

4 Manifolds with semi-free R^1 -action

Let M^{2n} be a closed smooth manifold with semi-free R^1 -action which has only isolated fixed points. It is known that every isolated fixed point p of a semi-free R^1 -action has the following important property: near such a point the action is equivalent to a certain linear $S^1 = SO(2)$ -action on \mathbb{R}^{2n} . More precisely, for every isolated fixed point p there exist an open invariant neighborhood U of p and a diffeomorphism h from U to an open unit disk D in \mathbb{C}^n centered at origin such that h is conjugate to the given S^1 -action on U to the S^1 -action on \mathbb{C}^n with weight $(1,\ldots,1)$. We will use both complex, (z_1,\ldots,z_n) , and real coordinates (x_1,y_1,\ldots,x_n,y_n) on $\mathbb{C}^n=\mathbb{R}^{2n}$ with $z_j=x_j+\sqrt{-1}y_j$. The pair (U,h) will be called a **standard chart** at the point p. Let $f:M^{2n}\to\mathbb{R}^1$ be a smooth R^1 -invariant map from the manifold M^{2n} into the circle \mathbb{R}^1 . Denote by Σ_f

the set of singular points of the map f. It is clear that the set of isolated singular points $\Sigma_f(p_j) \subset \Sigma_f$ of f coincides with the set of fixed points M^{R^1} .

For a nondegenerate critical point p_j there exist a standard chart (U_j, h_j) such that on U_j the map f is given by the following formula:

$$f = f(p) - |z_1|^2 - \dots - |z_{\lambda_i}|^2 + |z_{\lambda_i+1}|^2 + \dots + |z_n|^2$$
.

Notice that the index of nondegenerate critical point p_j is always even.

Denote by $\Sigma_f(R^1)$ the set singular points of the function f that are disconnected union of circles. These circles will be called singular.

A circle $s \in \Sigma f(R^1)$ is called nondegenerate if there is an R^1 -invariant neighborhood U of s on which R^1 acts freely and such that the point $\pi(s)$ is nondegenerate for the function $\pi_*(f): U/R^1 \to \mathbb{R}$, induced on U/R^1 by the natural map $\pi: U \to U/R^1$. An invariant version of Morse lemma says that there exist an R^1 -invariant neighborhood U of the circle s and coordinates (x_1, \ldots, x_{2n-1}) on U/R^1 such that the function $\pi_*(f)$ has the following presentation:

$$\pi_*(f) = \pi_*(f(\pi(s))) - x_1^2 - \ldots - x_{\lambda}^2 + x_{\lambda+1}^2 + \ldots + x_{2n-1}^2.$$

By definition λ is the **index** of singular circle s.

Definition 4.1. A smooth S^1 -invariant function $f: M^{2n} \to \mathbb{R}$ on a manifold M^{2n} with a semi-free circle action which has isolated fixed points is called: R^1_* -Bott function if each connected component of the singular set Σ_f is either a nondegenerate fixed point or a nondegenerate critical circle.

Theorem 4.1. Assume that M^{2n} is the closed manifold with a smooth semi-free circle action which has isolated fixed points p_1, \ldots, p_k . Let for any fixed point p_j consider standard chart (U_j, h_j) and function

$$f_j = f_j(p_i) - |z_1|^2 - \dots - |z_{\lambda_j}|^2 + |z_{\lambda_j+1}|^2 + \dots + |z_n|^2$$

on U_j , where λ_j is an **arbitrary integer** from $0, 1, \ldots, n$.

Then there exist an R^1 -invariant R^1_* -Bott function f on M^{2n} such that $f = f_j$ on U_j .

Proof. Consider on U_j the function f_j . Let $\pi_*(f_j): U_j/S^1 \to \mathbb{R}$, continuos function induced on U_j/R^1 by the natural map $\pi: U_j \to U_j/R^1$. It is clear that function $\pi_*(f_j)$ is smooth on manifold $(U_j \setminus I_j)$

 $p_j)/R^1$. Denote by g smooth extension functions $\pi_*(f_j)$ on M^{2n}/R^1 . By small deformation of the function g, that is fixed on U_j/R^1 , we shall find function g_1 on M^{2n}/R^1 such that g_1 equal $\pi_*(f_j)$ on U_j/R^1 and g_1 have only non-degenerate critical points on $M^{2n} \setminus \bigcup (U_j/R^1)$. Then the function $f = g_1 \circ p$ satisfy conditions of the theorem. \square

Theorem 4.2. The number of fixed points of any smooth semi-free circle action on M^{2n} with isolated fixed points is always even and equal to the Euler characteristic of the manifold M^{2n} .

$$f_1 = f_1(p_1) + |z_1|^2 + \ldots + |z_n|^2$$
 on U_1 and $f_j = f_j(p_i) - |z_1|^2 - \ldots - |z_n|^2$

on U_j $(2 \leq j \leq l)$ and extend such functions to S^1 -invariant Bott function f on manifold $M^{2n} \setminus U_1 \cup U_2 \cup ... \cup U_l$. We suppose that U_j is diffeomorfic to open disk D^{2n} for any j. Consider manifold $V^{2n} = W^{2n} \setminus \bigcup U_j$. The bouldary of manifold V^{2n} is disconnected union of spheres S^{2n-1} . By construction of manifold V^{2n} there is free cirle action. The boundary of the manifold V^{2n}/S^1 is disconnected union of complex projective spaces \mathbb{CP}^{n-1} . If the number of the boundary components of the manifold V^{2n}/S^1 is odd then we glue pairwise boundary components and obtain compact smoth manifold with with boundary \mathbb{CP}^{n-1} . From the well known fact that the manifold \mathbb{CP}^{n-1} is non-cobordant to zero it follows that the number of fixed points of any smooth semi-free circle action on M^{2n} with isolated fixed points is even. The value of the Euler characteristic $\chi(M^{2n}) = 2k$ is follow from Lemma $3.4.\square$

Definition 4.2. Let f be an R^1 -invariant S^1_* -Bott function for smooth semi-free circle action with isolated fixed points p_1, \ldots, p_{2k} on a closed manifold M^{2n} . Denote by λ_j the index of a critical point p_j of the function f. The **state** of the function f is the collection of numbers $\Lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{2k})$, which we will be denoted by $St_f(\Lambda)$. It is clear that all numbers λ_j are even and $(0 \le \lambda_j \le 2n)$.

Remark 4.1. It follows from Theorem 4.2 that for every smooth semifree circle action on a closed manifold M^{2n} with isolated fixed points p_1, \ldots, p_{2k} and any collection even numbers $\Lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{2k})$, such that $0 \leq \lambda_j \leq 2n$ there exists an R^1 -invariant R^1_* -Bott functions f on M^{2n} with state $St_f(\Lambda)$.

Definition 4.3. Let M^{2n} be a closed smooth manifold with smooth semifree circle action which has finitely many fixed points p_1, \ldots, p_{2k} . Fix any collection even numbers $\Lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{2k})$, such that $0 \le \lambda_j \le 2n$. The R^1 -Morse number $\mathcal{M}_i^{R^1}(M^{2n}, St(\Lambda))$ of index i is the minimum numbers of singular circles of index i taken over all R^1 -invariant R^1_* -Bott functions f on M^{2n} with state $St_f(\Lambda)$.

There is an unsolved problem: for a manifold M^{2n} with a semi-free circle action which has finitely many fixed points find exact values of numbers $\mathcal{M}_i^{R^1}(M^{2n}, St(\Lambda))$.

5 About R^1 -equivariant Morse numbers $\mathcal{M}_i^{R^1}(M^{2n}, St(\Lambda))$

Let M^{2n} be a compact closed manifold of dimension with semifree circle action which has finite many fixed points $p_1, ..., p_{2k}$. Denote by $\pi: M^{2n} \to M^{2n}/R^1$ canonical map. The set M^{2n}/R^1 is manifold with singular points $\pi(p_1), ..., \pi(p_{2k})$. It is clear that neighborhood of any singular point is cone over \mathbb{CP}^{n-1} . If $f: M^{2n} \to \mathbb{R}$ be a smooth R^1 -invariant R^1_* -Bott function on the manifold M^{2n} , then $\pi_*(f): M^{2n}/R^1 \to \mathbb{R}$ is continuos function such that on smooth noncompact manifold $N^{2n-1} = M^{2n}/R^1 \setminus \bigcup_{j=1}^{2k} \pi(p_j)$ it is Morse function. Choose an invariant neighborhood U_i of the point p_j diffeomorphic to

Choose an invariant neighborhood U_i of the point p_j diffeomorphic to the open unit disc $D^{2n}\subset\mathbb{C}^n$ and set $U=\bigcup_{j=1}^{2k}U_j$. Consider compact manifold $V^{2n-1}=(M^{2n}\setminus U)/R^1$, its boundary is a disconnected union of complex projective spaces $\partial V^{2n-1}=\mathbb{CP}_1^{n-1}\cup\ldots\cup\mathbb{CP}_{2k}^{n-1}$. It is clear that manifold $V^{2n-1}\setminus\partial V^{2n-1}$ and manifold N^{2n-1} are diffeomorphic. We use a manifold V^{2n-1} for the study of R^1 -invariant R^1_* -Bott functions on the manifold M^{2n} with states $St(\Lambda)=(0,\ldots,0,2n,\ldots,2n)$. Let $\partial_0 V^{2n-1}$ be a part of boundary of V^{2n-1} constrict from r component $\mathbb{C}P^{2n-2}$ $(2k-1\geq r\geq 1)$, and $\partial_1 V^{2n-1}=\partial V^{2n-1}\setminus\partial_0 V^{2n-1}$. On the manifold with boundary V^{2n-1} constructed Morse function $f:V\to [0,1]$, such that $f^{-1}(0)=\partial_0 V^{2n-1}$ and $f^{-1}(1)=\partial_1 V^{2n}$. Using the function f we constructed on the manifold M^{2n} R^1 -equivariant R^1_* -Bott function F with the state $St(0,\ldots,0,2n,\ldots,2n)$, such that restriction $\pi_*(F)$ on V coinside with f. Therefore Morse number of index i $M_i(V^{2n-1},\partial_0 V^{2n-1})$ of manifold with boundary V^{2n-1} is equal $\mathcal{M}^{S^1}_i(M^{2n},St(0,\ldots,0,2n,\ldots,2n)$.

Theorem 5.1. Let M^{2n} (2n > 8) be a closed smooth manifold admits a smooth semi-free circle action with isolated fixed points p_1, \ldots, p_{2k} . Then

for the manifold M^{2n} with the state $St(\Lambda) = (0, \dots, 0, 2n, \dots, 2n)$

$$\begin{split} \mathcal{M}_{i}^{R^{1}}(M^{2n},St(\Lambda) &= \mathbb{D}^{i}(V^{2n-1},\partial_{0}V^{2n-1}) + \widehat{S}_{(2)}^{i}(V^{2n-1},\partial_{0}V^{2n-1}) + \\ &+ \widehat{S}_{(2)}^{i+1}(V^{2n-1},\partial_{0}V^{2n-1}) + \dim_{N(Z[\pi])}(H_{(2)}^{i}(V^{2n-1},\partial_{0}V^{2n-1})) \\ & for \ 3 \leq i \leq 2n-4. \end{split}$$

Proof. Choose an invariant neighborhood U_i of the point p_i diffeomorphic to the unit disc $D^{2n} \subset \mathbb{C}^n$ and set $U = \bigcup_i U_i$. Let f_i be a function on U_i equal

$$f_i = |z_1|^2 + \ldots + |z_n|^2$$
, and f_j on U_j equal $f_j = 1 - |z_1|^2 - \ldots - |z_n|^2$,

for $i=1,...,r,\ j=r+1,...,2k-r.$ Consider the manifold $V^{2n}=(M^{2n}\setminus U)/R^1$. It is clear that its boundary is a disconnected union of complex projective spaces $\partial V^{2n}=\mathbb{C}P_1^{2n-2}\cup\ldots\cup\mathbb{C}P_{2k}^{2n-2}$. Let $\partial_0 V^{2n}$ be a part of boundary of V^{2n} consist from r compositely $\partial_0 V^{2n}$ be a part of boundary of $\partial_0 V^{2n}$ consist from $\partial_0 V^{2n}$

Let $\partial_0 V^{2n}$ be a part of boundary of V^{2n} consist from r component $\mathbb{C}P^{2n-2}$, that corespondent U_i and $\partial_1 V^{2n}$ be a part of boundary consist from component $\mathbb{C}P^{2n-2}$, that corespondent U_j . On manifold $V^{2n} = (M^{2n} \setminus U)/R^1$ constructed Morse function $f: V \to [0,1]$, such that $f^{-1}(0) = \partial_0 V^{2n}$ and $f^{-1}(1) = \partial_1 V^{2n}$. Using the function f we constructed on manifold M^{2n} S^1 -equivariant S^1_* -Bott function F with the state $St(\Lambda) = (0, \ldots, 0, 2n, \ldots, 2n)$, such that restriction F on U_i coinside with f_i , restriction F on U_j coinside with f_j and restriction $\pi_*(F)$ on V coinside with f. Therefore Morse number of cobordism V equal $\mathcal{M}^{\lambda}_{R^1}(M^{2n}, St(\Lambda))$ In the paper [12] there is value of Morse number of a cobordism. \square

Literature.

- 1. Barden D. Simply-connected five manifolds // Annals of Math., 1965, 82 n3, p. 365-385.
- 2. Novikov S.P. Multivalued functions and functionals. An analogue of the Morse theory, Soviet Math. Dokl., 1981, 24, p. 222–226.
- 3. Asimov D. Round handle and non-singular Morse-Smale flows // Ann. Math. 1975, 102 n.1, p. 41 54.
- 4. Bott R. Lecture on Morse theory, old and new// Bull. Amer.Math. Sos. 1982, 7 n.2, p. 331 358.
- 5. Franks J. Morse-Smale flows and homotopy theory // Topology 1979, 18 n2, p. 199 215.
- 6. Franks J. Homology and Dynamical systems // CMBS Regional Conf. Series in Math., n. 49, Amer. Math. Sos., Providence, R.I., 1982.
- 7. Kogan M. Existence of perfect Morse functions on spaces with semi- free circle action // Journal of Symplectic Geometry 2003, 1. n3, p. 829–850.
- 8. Smale S. On the structure of Manifolds // Amer. J. Math. 1962, 84 n.3, p. 387 399.
- 9. Miyoshi~S. Foliated round surgery of codimension-one foliated manifolds// Topology 1983, 21 n.3, p. 245 262.
- 10. $Morgan\ J.W.$ Non-singular Morse-Smale flows on 3-dimensional manifolds// Topology 1979, 18 n.1, p. 41 53.
- 11. Newhuse S., Peixoto M. There is a simple arc joining any two Morse-Smale Flows // Asterisque 1976, 31, p. 16 41.
- 12. Sharko V.V. New L^2 -invariants of chain complexes and applications, C^* -algebra and elliptic theory// Trends Math.- Basel, Switzerland: Birkhauser, -P. 291-321.2006
- 13. Thurston W. Existence of codimension-one foliation// Ann. Math. 1976, 104 n.2, p. 249 268.